Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TU Wien entwickelt den weltweit stärksten Terahertz-Quantenkaskadenlaser

29.10.2013
Ob bildgebende Diagnostik im Medizinbereich, Analyse unbekannter Substanzen oder ultraschnelle drahtlose Datenübertragung – Terahertzquellen sind in vielen Anwendungsbereichen gefragter denn je. An der TU Wien gelang nun ein technologischer Durchbruch.

Sehen kann man sie nicht, die Terahertz-Wellen, doch Anwendungsideen gibt es genug. Sie durchdringen viele Materialien, die für sichtbares Licht undurchsichtig sind und eignen sich ausgezeichnet zum Aufspüren von zahlreichen Molekülen.


Ein einsatzbereiter Terahertz-Quantenkaskadenlaser
TU Wien

Erzeugen lässt sich Terahertz-Licht mit Hilfe von Quantenkaskadenlasern, die nur wenige Millimeter groß sind. Diese ganz besondere Art von Lasern besteht aus maßgeschneiderten Halbleiterschichten im Nanometerbereich. An der TU Wien gelang nun ein neuer Weltrekord: Durch die spezielle Verschmelzung von symmetrischen Laserstrukturen konnte eine viermal so hohe Lichtleistung erzielt werden wie bisher.

Elektronensprünge erzeugen Terahertz-Licht

In jeder Schicht des Quantenkaskadenlasers können die Elektronen nur ganz bestimmte Energieniveaus annehmen. Legt man genau die richtige elektrische Spannung an, springen die Elektronen von Schicht zu Schicht und geben dabei jedes Mal Energie in Form von Licht ab. So lässt sich die exotische Terahertzstrahlung mit einer Wellenlänge im Submillimeterbereich (zwischen Mikrowellen- und Infrarot) effizient erzeugen.

Hohe Laserleistung für Science-Fiction-hafte Anwendungen

Viele Moleküle absorbieren Licht in diesem Wellenlängenbereich auf ganz charakteristische Weise, wodurch ein optischer Fingerabdruck entsteht. Dank dieser Eigenschaft kann Terahertz-Licht für chemische Detektoren eingesetzt werden. Auch für bildgebende Verfahren in der Medizin ist diese Strahlung hochinteressant: Einerseits hat sie weniger Energie als Röntgenstrahlung, ist also nicht ionisierend und daher ungefährlich, andererseits hat sie aber eine geringere Wellenlänge als Mikrowellenstrahlung, wodurch eine bessere Auflösung erzielt wird.

Diese Möglichkeiten erinnern stark an den legendären „Tricorder“ aus der TV-Serie „Star Trek“, einem tragbaren multifunktionalen Analyse- und Diagnosegerät. Neben einer kompakten Lichtquelle ist für Messungen an entfernten Objekten und für bildgebende Verfahren aber auch eine hohe optische Leistung erforderlich.

Eine Möglichkeit die Laserleistung zu erhöhen ist eine größere Anzahl von Halbleiterschichten zu verwenden. Je mehr Schichten der Laser hat, umso öfter wechselt das Elektron beim Durchgang den Energiezustand und umso mehr Photonen werden ausgesandt. Die Herstellung eines Lasers mit vielen Schichten ist allerdings schwierig, hier stößt man auf technologische Grenzen. Dem Team rund um Prof. Karl Unterrainer vom Institut für Photonik der TU Wien gelang es nun allerdings, zwei separate Quantenkaskadenlaser durch einen sogenannten Bonding-Prozess präzise übereinander zu stapeln.

„Das klappt aber nur bei einem ganz speziellen Design der Quantenkaskaden-Struktur“, erklärt Christoph Deutsch (TU Wien), „mit herkömmlichen Halbleiterlasern wäre das prinzipiell unmöglich.“ Man benötigt dazu symmetrische Laser, durch welche Elektronen in beiden Richtungen gleichermaßen hindurchwandern können. Das Team musste daher zuerst die herstellungsbedingten Asymmetrien der Laser erforschen und kompensieren.

Doppelt ergibt Vierfach – der Rekordlaser

Je mehr Schichten der Laser hat, umso öfter kann ein Elektron den Energiezustand wechseln und umso mehr Photonen werden erzeugt. Zusätzlich wird die Effizienz aufgrund verbesserter optischer Eigenschaften erhöht. „Deshalb bringt eine Verdoppelung der Halbleiterschichten sogar eine Vervierfachung der Leistung mit sich“, erklärt Martin Brandstetter (TU Wien). Der bisherige Weltrekord für Terahertz-Quantenkaskadenlaser wurde mit knapp 250 Milliwatt vom renommierten Massachusetts Institute of Technoloy (MIT) erzielt, der TU-Laser erreicht nun ein ganzes Watt. Das ist nicht nur ein weiterer Rekord der TU Wien, sondern stellt auch das Überschreiten einer wichtigen Hürde für den Einsatz von Terahertz-Quantenkaskadenlasern dar.

Originalpublikationen:
M. Brandstetter et al., “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions”, Appl. Phys. Lett., 103, 171113 (2013)

C. Deutsch et al., „Dopant migration effects in terahertz quantum cascade lasers”, Appl. Phys. Lett., 102, 201102 (2013).

Rückfragehinweise:

Dipl.-Ing. Martin Brandstetter
Institut für Photonik
Technische Universität Wien
Gußhausstraße 27-29, 1040 Wien
T: +43-1-58801-38732
martin.brandstetter@tuwien.ac.at
Dr. Christoph Deutsch
Institut für Photonik
Technische Universität Wien
Gußhausstraße 27–29, 1040 Wien
T: +43-1-58801-38773
christoph.deutsch@tuwien.ac.at
Weitere Informationen:
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/quantenkaskadenlaser/

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ein Hauch von Galaxien im Zentrum eines gigantischen Galaxienhaufens
21.08.2017 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik