Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TU Wien entwickelt den weltweit stärksten Terahertz-Quantenkaskadenlaser

29.10.2013
Ob bildgebende Diagnostik im Medizinbereich, Analyse unbekannter Substanzen oder ultraschnelle drahtlose Datenübertragung – Terahertzquellen sind in vielen Anwendungsbereichen gefragter denn je. An der TU Wien gelang nun ein technologischer Durchbruch.

Sehen kann man sie nicht, die Terahertz-Wellen, doch Anwendungsideen gibt es genug. Sie durchdringen viele Materialien, die für sichtbares Licht undurchsichtig sind und eignen sich ausgezeichnet zum Aufspüren von zahlreichen Molekülen.


Ein einsatzbereiter Terahertz-Quantenkaskadenlaser
TU Wien

Erzeugen lässt sich Terahertz-Licht mit Hilfe von Quantenkaskadenlasern, die nur wenige Millimeter groß sind. Diese ganz besondere Art von Lasern besteht aus maßgeschneiderten Halbleiterschichten im Nanometerbereich. An der TU Wien gelang nun ein neuer Weltrekord: Durch die spezielle Verschmelzung von symmetrischen Laserstrukturen konnte eine viermal so hohe Lichtleistung erzielt werden wie bisher.

Elektronensprünge erzeugen Terahertz-Licht

In jeder Schicht des Quantenkaskadenlasers können die Elektronen nur ganz bestimmte Energieniveaus annehmen. Legt man genau die richtige elektrische Spannung an, springen die Elektronen von Schicht zu Schicht und geben dabei jedes Mal Energie in Form von Licht ab. So lässt sich die exotische Terahertzstrahlung mit einer Wellenlänge im Submillimeterbereich (zwischen Mikrowellen- und Infrarot) effizient erzeugen.

Hohe Laserleistung für Science-Fiction-hafte Anwendungen

Viele Moleküle absorbieren Licht in diesem Wellenlängenbereich auf ganz charakteristische Weise, wodurch ein optischer Fingerabdruck entsteht. Dank dieser Eigenschaft kann Terahertz-Licht für chemische Detektoren eingesetzt werden. Auch für bildgebende Verfahren in der Medizin ist diese Strahlung hochinteressant: Einerseits hat sie weniger Energie als Röntgenstrahlung, ist also nicht ionisierend und daher ungefährlich, andererseits hat sie aber eine geringere Wellenlänge als Mikrowellenstrahlung, wodurch eine bessere Auflösung erzielt wird.

Diese Möglichkeiten erinnern stark an den legendären „Tricorder“ aus der TV-Serie „Star Trek“, einem tragbaren multifunktionalen Analyse- und Diagnosegerät. Neben einer kompakten Lichtquelle ist für Messungen an entfernten Objekten und für bildgebende Verfahren aber auch eine hohe optische Leistung erforderlich.

Eine Möglichkeit die Laserleistung zu erhöhen ist eine größere Anzahl von Halbleiterschichten zu verwenden. Je mehr Schichten der Laser hat, umso öfter wechselt das Elektron beim Durchgang den Energiezustand und umso mehr Photonen werden ausgesandt. Die Herstellung eines Lasers mit vielen Schichten ist allerdings schwierig, hier stößt man auf technologische Grenzen. Dem Team rund um Prof. Karl Unterrainer vom Institut für Photonik der TU Wien gelang es nun allerdings, zwei separate Quantenkaskadenlaser durch einen sogenannten Bonding-Prozess präzise übereinander zu stapeln.

„Das klappt aber nur bei einem ganz speziellen Design der Quantenkaskaden-Struktur“, erklärt Christoph Deutsch (TU Wien), „mit herkömmlichen Halbleiterlasern wäre das prinzipiell unmöglich.“ Man benötigt dazu symmetrische Laser, durch welche Elektronen in beiden Richtungen gleichermaßen hindurchwandern können. Das Team musste daher zuerst die herstellungsbedingten Asymmetrien der Laser erforschen und kompensieren.

Doppelt ergibt Vierfach – der Rekordlaser

Je mehr Schichten der Laser hat, umso öfter kann ein Elektron den Energiezustand wechseln und umso mehr Photonen werden erzeugt. Zusätzlich wird die Effizienz aufgrund verbesserter optischer Eigenschaften erhöht. „Deshalb bringt eine Verdoppelung der Halbleiterschichten sogar eine Vervierfachung der Leistung mit sich“, erklärt Martin Brandstetter (TU Wien). Der bisherige Weltrekord für Terahertz-Quantenkaskadenlaser wurde mit knapp 250 Milliwatt vom renommierten Massachusetts Institute of Technoloy (MIT) erzielt, der TU-Laser erreicht nun ein ganzes Watt. Das ist nicht nur ein weiterer Rekord der TU Wien, sondern stellt auch das Überschreiten einer wichtigen Hürde für den Einsatz von Terahertz-Quantenkaskadenlasern dar.

Originalpublikationen:
M. Brandstetter et al., “High power terahertz quantum cascade lasers with symmetric wafer bonded active regions”, Appl. Phys. Lett., 103, 171113 (2013)

C. Deutsch et al., „Dopant migration effects in terahertz quantum cascade lasers”, Appl. Phys. Lett., 102, 201102 (2013).

Rückfragehinweise:

Dipl.-Ing. Martin Brandstetter
Institut für Photonik
Technische Universität Wien
Gußhausstraße 27-29, 1040 Wien
T: +43-1-58801-38732
martin.brandstetter@tuwien.ac.at
Dr. Christoph Deutsch
Institut für Photonik
Technische Universität Wien
Gußhausstraße 27–29, 1040 Wien
T: +43-1-58801-38773
christoph.deutsch@tuwien.ac.at
Weitere Informationen:
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/quantenkaskadenlaser/

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften