Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TU Wien entwickelt Licht-Transistor

02.07.2013
Die Schwingungsrichtung von Lichtstrahlen kann an der TU Wien gedreht werden – einfach durch Anlegen einer elektrischen Spannung an ein spezielles Material. So lässt sich ein Transistor bauen, der nicht mit Strom, sondern mit Licht funktioniert.

Dass Licht in unterschiedliche Richtungen schwingen kann, erlebt man im 3D-Kino: Dort lässt jedes der Gläser nur Licht einer bestimmten Schwingungsrichtung durch. Die Polarisationsrichtung von Licht gezielt zu drehen ohne dass dabei ein großer Teil des Lichts verschluckt wird, ist allerdings schwierig.


Die Schwingungsrichtung einer Lichtwelle ändert sich, wenn sie durch eine dünne Materialschicht geschickt wird. TU Wien

An der TU Wien gelang dieses Kunststück nun, und zwar mit einer technologisch ganz besonders wichtigen Art von Licht - der Terahertz-Strahlung. Ein elektrisches Feld, angelegt an einer hauchdünnen Materialschicht, kann die Polarisation des Strahls beliebig drehen. So entsteht ein effizienter, miniaturisierbarer Transistor für Licht, den man für den Aufbau optischer Computer verwenden könnte.

Gedrehtes Licht – der Faraday-Effekt

Gewisse Materialien haben die Eigenschaft, die Schwingungsrichtung von Licht zu drehen, wenn sie einem Magnetfeld ausgesetzt werden – man spricht vom Faraday-Effekt. Normalerweise ist dieser Effekt aber winzig klein. Schon vor zwei Jahren gelang es Prof. Andrei Pimenov und seinem Team vom Institut für Festkörperphysik der TU Wien gemeinsam mit einer Forschungsgruppe der Universität Würzburg, einen riesengroßen Faraday-Effekt zu erzielen, indem sie das Licht durch spezielle Quecksilber-Tellurid-Plättchen schickten und ein Magnetfeld anlegten.

Allerdings konnte der Effekt damals nur über eine äußere magnetische Spule gesteuert werden, womit große technologische Nachteile verbunden sind. „Verwendet man einen Elektromagneten, um den Effekt zu steuern, benötigt man sehr starke Ströme“, erklärt Andrei Pimenov. Nun gelang es, die Drehung von Terahertz-Strahlen ganz einfach durch ein Anlegen einer elektrischer Spannung von weniger als einem Volt zu steuern. Dadurch wird das System viel einfacher und schneller.

Dafür, dass sich die Polarisation überhaupt dreht, ist nach wie vor ein Magnetfeld verantwortlich. Doch die Stärke des Effektes wird nicht mehr durch die Stärke des Magnetfeldes bestimmt, sondern durch die Anzahl der Elektronen, die an dem Prozess beteiligt sind – und diese Anzahl lässt sich ganz einfach durch elektrische Spannung regulieren. Daher genügt nun ein Permanentmagnet und eine Spannungsquelle, die technisch vergleichsweise einfach zu handhaben ist.

Terahertz-Strahlung

Das Licht, das für die Experimente verwendet wird, ist nicht sichtbar: Es handelt sich um Terahertz-Strahlung mit einer Wellenlänge in der Größenordnung von einem Millimeter. „Die Frequenz dieser Strahlung entspricht der Taktfrequenz, die vielleicht die übernächste Generation von Computern erreichen wird“, meint Pimenov. „Die Bauteile heutiger Computer, in denen Information nur in Form von elektrischen Strömen weitergegeben wird, können kaum noch grundlegend verbessert werden. Die Ströme durch Licht zu ersetzen würde ganz neue Möglichkeiten bringen.“ Doch nicht nur für hypothetische neue Computer ist es wichtig, durch den neu entwickelten Licht-Dreh-Mechanismus Strahlen ganz gezielt kontrollieren zu können. Terahertzstrahlung wird heute für viele Zwecke verwendet, etwa auch für bildgebende Verfahren in der Sicherheitstechnik am Flughafen.
Optischer Transistor

Schickt man Licht durch einen Polarisationsfilter, kann es je nach Polarisationsrichtung durchgelassen oder abgeblockt werden. Die Drehung des Lichtstrahls – und damit die angelegte elektrische Spannung – entscheidet also, ob ein Lichtsignal gesendet oder blockiert wird. „Das ist genau das Prinzip eines Transistors“, erklärt Pimenov: „Das Anlegen einer äußeren Spannung entscheidet darüber, ob Strom fließt oder nicht – und in unserem Fall entscheidet die Spannung eben, ob das Licht ankommt oder nicht.“ Die neue Erfindung ist somit die optische Entsprechung eines elektrischen Transistors.

Rückfragehinweis:
Prof. Andrei Pimenov
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-137 23
andrei.pimenov@tuwien.ac.at
Weitere Informationen:
http://apl.aip.org/resource/1/applab/v102/i24/p241902_s1
http://Originalpublikation in "Applied Physics Letters"
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/licht_transistor/

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten