Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TU Wien entwickelt Chip für neuartige Wärmebildkamera

16.08.2016

Ein Quanten-Chip, der Infrarotbilder aufnehmen kann – und zwar schneller und ohne aufwändige Kühlung: Eine Erfindung der TU Wien verspricht spannende Anwendungsmöglichkeiten.

Ein Schiff ist gekentert – weit draußen am Meer. Schwimmen irgendwo noch hilfesuchende Überlebende herum?


Pixel-Array für die Aufnahme von Wärmebildern, entwickelt an der TU Wien.

TU Wien


Prototyp mit Gehäuse

TU Wien

Mit einer Wärmebildkamera, auf einer Drohne montiert, lässt sich das auch bei Nacht rasch feststellen. Doch für Kameras, die Infrarotstrahlung detektieren, gibt es auch noch viele andere Einsatzszenarien. Man könnte sie zum Beispiel in der Umwelttechnik verwenden, um bestimmte Chemikalien nachzuweisen.

An der TU Wien gelang es nun, einen neuartigen Infrarot-Detektor zu entwickeln, der mehrere Vorteile vereint: Er ist schnell, muss nicht gekühlt werden und lässt sich ganz spezifisch auf bestimmte Wellenlängen optimieren.

Wärme und Quanten

„Grundsätzlich gibt es heute zwei Typen von Detektoren für Infrarotstrahlung“, erklärt der Elektrotechniker Prof. Gottfried Strasser, Leiter des Zentrums für Mikro- und Nanostrukturen an der TU Wien. „Thermische Detektoren, die auf Wärme reagieren, und photonische Detektoren, in denen die einfallende Strahlung quantenphysikalische Prozesse auslöst.“

Zur ersten Gruppe gehören die sogenannten Bolometer. Sie enthalten elektronische Bauteile, die von der Strahlung erwärmt werden und dadurch ihren elektrischen Widerstand ändern. Das geht nicht besonders schnell und nicht besonders präzise, aber es genügt, um beispielsweise ein Wärmebild eines Gebäudes zu erstellen und zu sehen, an welchen Stellen die Wärmedämmung verbessert werden muss.

Photonische Detektoren hingegen funktionieren ganz anders: In ihnen wird Infrarotlicht absorbiert, Elektronen werden dadurch in einen höheren Energiezustand versetzt, und diese Zustandsänderung der Elektronen wird dann gemessen.

„Ein großes Problem dabei ist allerdings der Dunkelstrom“, sagt Strasser. „Auch wenn gar keine Infrarotstrahlung auf den Detektor trifft – ein gewisses Hintergrundsignal, ein permanentes Grundrauschen bekommt man immer.“

Das hat damit zu tun, dass man an diese Detektoren eine Spannung anlegen muss. Der Detektor wird warm, durch Wärmeprozesse im Detektormaterial werden dieselben elektronischen Vorgänge ausgelöst wie durch das Infrarotlicht, das man eigentlich detektieren möchte. Ab einer gewissen Temperatur wird der Detektor unbrauchbar, daher kühlt man die Geräte meist mit flüssigem Stickstoff. Wenn eine aufwändige Kühlung nötig ist, werden die Detektoren allerdings teuer, groß und schwer.

Quantenkaskaden-Detektor

An der TU Wien ging man einen anderen Weg: Man baute einen Array aus Quantenkaskaden-Detektoren. Sie bestehen aus mehreren Schichten mit jeweils unterschiedlichen elektronischen Eigenschaften. Spannung muss keine angelegt werden, das Bildrauschen ist gering, eine Kühlung ist nicht nötig.

Hergestellt wurde ein Detektor-Chip mit 8x8 Pixeln, der auf Infrarotstrahlung mit einer Wellenlänge von 4,3µm reagiert. „Es ging darum, das Prinzip zu demonstrieren, ein Hochskalieren auf eine höhere Pixel-Anzahl wäre technisch kein Problem“, sagt Gottfried Strasser. Auch die Wellenlänge, auf die der Detektor optimiert ist, lässt sich gezielt anpassen. Das bietet besonders interessante Möglichkeiten:

Infrarotstrahlung kann Moleküle nämlich zu bestimmten Vibrationen oder Rotationen anregen. Zu jeder dieser Anregungen gehört eine ganz bestimmte Wellenlänge. Daher können unterschiedliche Moleküle unterschiedliche Infrarot-Wellenlängen absorbieren, jedes Molekül hat einen ganz spezifischen Infrarot-Fingerabdruck, anhand dessen man es zweifelsfrei identifizieren kann.

Eine Infrarot-Kamera, die hochspezifisch Strahlung mit ganz bestimmten Wellenlängen abbildet, könnte man daher nutzen, um auf einen Blick die Verteilung unterschiedlicher Moleküle zu ermitteln.

Originalpublikation: https://www.osapublishing.org/oe/abstract.cfm?uri=oe-24-15-17041

Prof. Gottfried Strasser
Institut für Festkörperelektronik,
Zentrum für Mikro- und Nanostrukturen
Technische Universität Wien
Floragasse 7, 1040 Wien
T: +43-1-58801-36230
gottfried.strasser@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics