Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TU Wien entwickelt Chip für neuartige Wärmebildkamera

16.08.2016

Ein Quanten-Chip, der Infrarotbilder aufnehmen kann – und zwar schneller und ohne aufwändige Kühlung: Eine Erfindung der TU Wien verspricht spannende Anwendungsmöglichkeiten.

Ein Schiff ist gekentert – weit draußen am Meer. Schwimmen irgendwo noch hilfesuchende Überlebende herum?


Pixel-Array für die Aufnahme von Wärmebildern, entwickelt an der TU Wien.

TU Wien


Prototyp mit Gehäuse

TU Wien

Mit einer Wärmebildkamera, auf einer Drohne montiert, lässt sich das auch bei Nacht rasch feststellen. Doch für Kameras, die Infrarotstrahlung detektieren, gibt es auch noch viele andere Einsatzszenarien. Man könnte sie zum Beispiel in der Umwelttechnik verwenden, um bestimmte Chemikalien nachzuweisen.

An der TU Wien gelang es nun, einen neuartigen Infrarot-Detektor zu entwickeln, der mehrere Vorteile vereint: Er ist schnell, muss nicht gekühlt werden und lässt sich ganz spezifisch auf bestimmte Wellenlängen optimieren.

Wärme und Quanten

„Grundsätzlich gibt es heute zwei Typen von Detektoren für Infrarotstrahlung“, erklärt der Elektrotechniker Prof. Gottfried Strasser, Leiter des Zentrums für Mikro- und Nanostrukturen an der TU Wien. „Thermische Detektoren, die auf Wärme reagieren, und photonische Detektoren, in denen die einfallende Strahlung quantenphysikalische Prozesse auslöst.“

Zur ersten Gruppe gehören die sogenannten Bolometer. Sie enthalten elektronische Bauteile, die von der Strahlung erwärmt werden und dadurch ihren elektrischen Widerstand ändern. Das geht nicht besonders schnell und nicht besonders präzise, aber es genügt, um beispielsweise ein Wärmebild eines Gebäudes zu erstellen und zu sehen, an welchen Stellen die Wärmedämmung verbessert werden muss.

Photonische Detektoren hingegen funktionieren ganz anders: In ihnen wird Infrarotlicht absorbiert, Elektronen werden dadurch in einen höheren Energiezustand versetzt, und diese Zustandsänderung der Elektronen wird dann gemessen.

„Ein großes Problem dabei ist allerdings der Dunkelstrom“, sagt Strasser. „Auch wenn gar keine Infrarotstrahlung auf den Detektor trifft – ein gewisses Hintergrundsignal, ein permanentes Grundrauschen bekommt man immer.“

Das hat damit zu tun, dass man an diese Detektoren eine Spannung anlegen muss. Der Detektor wird warm, durch Wärmeprozesse im Detektormaterial werden dieselben elektronischen Vorgänge ausgelöst wie durch das Infrarotlicht, das man eigentlich detektieren möchte. Ab einer gewissen Temperatur wird der Detektor unbrauchbar, daher kühlt man die Geräte meist mit flüssigem Stickstoff. Wenn eine aufwändige Kühlung nötig ist, werden die Detektoren allerdings teuer, groß und schwer.

Quantenkaskaden-Detektor

An der TU Wien ging man einen anderen Weg: Man baute einen Array aus Quantenkaskaden-Detektoren. Sie bestehen aus mehreren Schichten mit jeweils unterschiedlichen elektronischen Eigenschaften. Spannung muss keine angelegt werden, das Bildrauschen ist gering, eine Kühlung ist nicht nötig.

Hergestellt wurde ein Detektor-Chip mit 8x8 Pixeln, der auf Infrarotstrahlung mit einer Wellenlänge von 4,3µm reagiert. „Es ging darum, das Prinzip zu demonstrieren, ein Hochskalieren auf eine höhere Pixel-Anzahl wäre technisch kein Problem“, sagt Gottfried Strasser. Auch die Wellenlänge, auf die der Detektor optimiert ist, lässt sich gezielt anpassen. Das bietet besonders interessante Möglichkeiten:

Infrarotstrahlung kann Moleküle nämlich zu bestimmten Vibrationen oder Rotationen anregen. Zu jeder dieser Anregungen gehört eine ganz bestimmte Wellenlänge. Daher können unterschiedliche Moleküle unterschiedliche Infrarot-Wellenlängen absorbieren, jedes Molekül hat einen ganz spezifischen Infrarot-Fingerabdruck, anhand dessen man es zweifelsfrei identifizieren kann.

Eine Infrarot-Kamera, die hochspezifisch Strahlung mit ganz bestimmten Wellenlängen abbildet, könnte man daher nutzen, um auf einen Blick die Verteilung unterschiedlicher Moleküle zu ermitteln.

Originalpublikation: https://www.osapublishing.org/oe/abstract.cfm?uri=oe-24-15-17041

Prof. Gottfried Strasser
Institut für Festkörperelektronik,
Zentrum für Mikro- und Nanostrukturen
Technische Universität Wien
Floragasse 7, 1040 Wien
T: +43-1-58801-36230
gottfried.strasser@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie