Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trotz Trägheit in Aktion beobachtet

04.02.2016

Mit Hilfe der Erzeugung der ersten optischen Attosekundenpulse bestimmten Wissenschaftler aus dem Labor für Attosekundenphysik die Zeitspanne, die Elektronen in Atomen benötigen, um auf die elektromagnetischen Kräfte des Lichtes zu reagieren.

Im Wettlauf um immer schnellere Elektronik könnte Licht eine wichtige Rolle spielen. So ver-folgen Physiker z.B. das Ziel, mit kurzen Lichtpulsen einer präzise kontrollierten Wellenform elektrische Ströme in Schaltkreisen mit Lichtfrequenzen zu steuern.


Optische Attosekundenblitze fangen die Bewegung träger Elektronen ein.

Graphik: Christian Hackenberger

Aber werden die Elektronen in den Schaltkreisen den Lichtschwingungen unmittelbar folgen? Wie schnell werden sie auf das Drücken eines „licht-basierten“ Knopfes reagieren? Oder, ganz grundsätzlich gefragt: wie schnell sprechen Elektronen, die in Atomen, Molekülen oder Festkörpern ge-bunden sind, auf die Einstrahlung von Licht an?

Jetzt hat ein internationales Wissenschaft-lerteam unter der Leitung von Dr. Eleftherios Goulielmakis, Leiter der Forschungsgruppe „Attoelectronics“ am Max-Planck-Institut für Quantenoptik, zusammen mit Forschern der Texas A&M University (USA) und der Staatlichen Lomonossow Universität Moskau (Russ-land) erstmals einen solchen Verzögerungseffekt gemessen. Dabei regten sie mit optischen Attosekunden-Lichtpulsen Krypton-Atome an und beobachteten, dass es ungefähr 100 Atto-sekunden dauert, bis sich die Reaktion der Elektronen auf die elektromagnetischen Kräfte des Lichtes bemerkbar macht. (Nature, 4. Februar 2016, DOI: 10.1038/nature16528)

Nach den Vorhersagen der Quantenmechanik benötigen selbst die leichtesten Teilchen außerhalb des Atomkerns, die Elektronen, eine bestimmte, wenn auch sehr kurze Zeitspanne, um auf die Kräf-te von Licht zu reagieren. Dabei handelt es sich nur um einige 10 oder 100 Attosekunden (1 as ist ein Milliardstel von einer milliardstel Sekunde), weshalb dieser Prozess bislang als unmessbar schnell galt.

„Eine Voraussetzung dafür, ein so kurzes Ereignis einzufangen, ist ein Lichtblitz, der die Elektronen extrem schnell in Bewegung versetzt – im Fachjargon „polarisiert“ – und so ihre Reaktionszeit testet“, erklärt Dr. Mohammed Hassan aus der Forschungsgruppe von Dr. Goulielmakis. So einen Lichtblitz stellen die Wissenschaftler mit einem sogenannten „light-field synthesizer“ her.

Dabei manipulieren sie die Eigenschaften des sichtbaren, nah-infraroten und ultravioletten Lichtes so, dass sie daraus dann einen Lichtpuls im sichtbaren Bereich mit einer Länge von nur 380 Attosekunden zusammensetzen können. Die Pulse sind so kurz, dass sie kaum mehr als eine halbe Schwingung des Lichtfeldes mit sich führen und sind damit die kürzesten je im sichtbaren Bereich erzeugten Pulse. „Wir können sichtbares Licht nicht nur mit Attosekunden-Präzision manipulieren, sondern seine Wellen auch auf Attosekunden-Zeitintervalle beschränken“, erläutert Dr. Tran Trung Luu, Wissenschaftler im Team von Dr. Gouliemakis.

Mit diesem neuen Werkzeug verfügten die Wissenschaftler über eine Methode, Krypton-Atome mit optischen Attosekunden-Pulsen anzuregen. Durch Variation von Intensität und Phase der jeweiligen Pulse erreichten sie, dass in verschiedenen Experimenten leicht unterschiedliche Kräfte auf die Elektronen in den Atomen wirkten. Anhand der daraufhin von den Elektronen emittierten Vakuum-Ultraviolett-Strahlung konnten sie erkennen, wie die Elektronen darauf reagieren. Daraus konnten sie ableiten, dass es etwa 100 Attosekunden dauert, bis die Elektronen auf die Kraft des Lichtes ansprechen.

“Unsere Untersuchung setzt einen Schlussstrich unter die Jahrzehnte währende Debatte über die fundamentale Dynamik der Licht-Materie-Wechselwirkung. In den letzten Dekaden waren wir bereits in der Lage, sowohl die Drehbewegungen als auch die Kernbewegungen in Molekülen mit der Femtosekundentechnologie aufzudecken. Jetzt können wir erstmals auch die Reaktion der in den Atomen gebundenen Elektronen in Echtzeit verfolgen“, betont Dr. Goulielmakis. „Aber gleichzeitig stehen wir am Beginn einer neuen Epoche, in der wir Materie über die Beeinflussung von Elektronen untersuchen und manipulieren werden.“

Einer der nächsten Schritte, die Goulielmakis und sein Team planen, ist die Ausdehnung dieser Untersuchungen auf die Elektronendynamik in Festkörpern. „Damit werden wir herausfinden, auf welchem Weg wir am besten neuartige ultraschnelle Elektronik und Photonik realisieren können, die auf Zeitskalen von wenigen Femtosekunden (1 fs entspricht 10hoch-15 s) und mit Petahertz-Taktfrequenzen (10hoch15 Hz) arbeiten“, führt Goulielmakis aus. Olivia Meyer-Streng

Originalveröffentlichung:
M. Th. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis
Optical attosecond pulses and tracking the nonlinear response of bound electrons
Nature, 4. Februar 2016, DOI: 10.1038/nature16528

Kontakt:
Dr. Eleftherios Goulielmakis
ERC Forschungsgruppe Attoelectronics
Max-Planck-Institut für Quantenoptik
Labor für Attosekundenphysik
Hans-Kopfermann-Str. 1, 85748 Garching
Telefon: +49 (0)89 / 32 905 -632 /Fax: -200
E-Mail: Eleftherios.Goulielmakis@mpq.mpg.de
www.attoworld.de/goulielmakis-group

Dr. Olivia Meyer-Streng
Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, D-85748 Garching
Telefon: +49-89-32905-213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte