Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trotz Trägheit in Aktion beobachtet

04.02.2016

Mit Hilfe der Erzeugung der ersten optischen Attosekundenpulse bestimmten Wissenschaftler aus dem Labor für Attosekundenphysik die Zeitspanne, die Elektronen in Atomen benötigen, um auf die elektromagnetischen Kräfte des Lichtes zu reagieren.

Im Wettlauf um immer schnellere Elektronik könnte Licht eine wichtige Rolle spielen. So ver-folgen Physiker z.B. das Ziel, mit kurzen Lichtpulsen einer präzise kontrollierten Wellenform elektrische Ströme in Schaltkreisen mit Lichtfrequenzen zu steuern.


Optische Attosekundenblitze fangen die Bewegung träger Elektronen ein.

Graphik: Christian Hackenberger

Aber werden die Elektronen in den Schaltkreisen den Lichtschwingungen unmittelbar folgen? Wie schnell werden sie auf das Drücken eines „licht-basierten“ Knopfes reagieren? Oder, ganz grundsätzlich gefragt: wie schnell sprechen Elektronen, die in Atomen, Molekülen oder Festkörpern ge-bunden sind, auf die Einstrahlung von Licht an?

Jetzt hat ein internationales Wissenschaft-lerteam unter der Leitung von Dr. Eleftherios Goulielmakis, Leiter der Forschungsgruppe „Attoelectronics“ am Max-Planck-Institut für Quantenoptik, zusammen mit Forschern der Texas A&M University (USA) und der Staatlichen Lomonossow Universität Moskau (Russ-land) erstmals einen solchen Verzögerungseffekt gemessen. Dabei regten sie mit optischen Attosekunden-Lichtpulsen Krypton-Atome an und beobachteten, dass es ungefähr 100 Atto-sekunden dauert, bis sich die Reaktion der Elektronen auf die elektromagnetischen Kräfte des Lichtes bemerkbar macht. (Nature, 4. Februar 2016, DOI: 10.1038/nature16528)

Nach den Vorhersagen der Quantenmechanik benötigen selbst die leichtesten Teilchen außerhalb des Atomkerns, die Elektronen, eine bestimmte, wenn auch sehr kurze Zeitspanne, um auf die Kräf-te von Licht zu reagieren. Dabei handelt es sich nur um einige 10 oder 100 Attosekunden (1 as ist ein Milliardstel von einer milliardstel Sekunde), weshalb dieser Prozess bislang als unmessbar schnell galt.

„Eine Voraussetzung dafür, ein so kurzes Ereignis einzufangen, ist ein Lichtblitz, der die Elektronen extrem schnell in Bewegung versetzt – im Fachjargon „polarisiert“ – und so ihre Reaktionszeit testet“, erklärt Dr. Mohammed Hassan aus der Forschungsgruppe von Dr. Goulielmakis. So einen Lichtblitz stellen die Wissenschaftler mit einem sogenannten „light-field synthesizer“ her.

Dabei manipulieren sie die Eigenschaften des sichtbaren, nah-infraroten und ultravioletten Lichtes so, dass sie daraus dann einen Lichtpuls im sichtbaren Bereich mit einer Länge von nur 380 Attosekunden zusammensetzen können. Die Pulse sind so kurz, dass sie kaum mehr als eine halbe Schwingung des Lichtfeldes mit sich führen und sind damit die kürzesten je im sichtbaren Bereich erzeugten Pulse. „Wir können sichtbares Licht nicht nur mit Attosekunden-Präzision manipulieren, sondern seine Wellen auch auf Attosekunden-Zeitintervalle beschränken“, erläutert Dr. Tran Trung Luu, Wissenschaftler im Team von Dr. Gouliemakis.

Mit diesem neuen Werkzeug verfügten die Wissenschaftler über eine Methode, Krypton-Atome mit optischen Attosekunden-Pulsen anzuregen. Durch Variation von Intensität und Phase der jeweiligen Pulse erreichten sie, dass in verschiedenen Experimenten leicht unterschiedliche Kräfte auf die Elektronen in den Atomen wirkten. Anhand der daraufhin von den Elektronen emittierten Vakuum-Ultraviolett-Strahlung konnten sie erkennen, wie die Elektronen darauf reagieren. Daraus konnten sie ableiten, dass es etwa 100 Attosekunden dauert, bis die Elektronen auf die Kraft des Lichtes ansprechen.

“Unsere Untersuchung setzt einen Schlussstrich unter die Jahrzehnte währende Debatte über die fundamentale Dynamik der Licht-Materie-Wechselwirkung. In den letzten Dekaden waren wir bereits in der Lage, sowohl die Drehbewegungen als auch die Kernbewegungen in Molekülen mit der Femtosekundentechnologie aufzudecken. Jetzt können wir erstmals auch die Reaktion der in den Atomen gebundenen Elektronen in Echtzeit verfolgen“, betont Dr. Goulielmakis. „Aber gleichzeitig stehen wir am Beginn einer neuen Epoche, in der wir Materie über die Beeinflussung von Elektronen untersuchen und manipulieren werden.“

Einer der nächsten Schritte, die Goulielmakis und sein Team planen, ist die Ausdehnung dieser Untersuchungen auf die Elektronendynamik in Festkörpern. „Damit werden wir herausfinden, auf welchem Weg wir am besten neuartige ultraschnelle Elektronik und Photonik realisieren können, die auf Zeitskalen von wenigen Femtosekunden (1 fs entspricht 10hoch-15 s) und mit Petahertz-Taktfrequenzen (10hoch15 Hz) arbeiten“, führt Goulielmakis aus. Olivia Meyer-Streng

Originalveröffentlichung:
M. Th. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis
Optical attosecond pulses and tracking the nonlinear response of bound electrons
Nature, 4. Februar 2016, DOI: 10.1038/nature16528

Kontakt:
Dr. Eleftherios Goulielmakis
ERC Forschungsgruppe Attoelectronics
Max-Planck-Institut für Quantenoptik
Labor für Attosekundenphysik
Hans-Kopfermann-Str. 1, 85748 Garching
Telefon: +49 (0)89 / 32 905 -632 /Fax: -200
E-Mail: Eleftherios.Goulielmakis@mpq.mpg.de
www.attoworld.de/goulielmakis-group

Dr. Olivia Meyer-Streng
Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, D-85748 Garching
Telefon: +49-89-32905-213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik