Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trennung nach Maß

05.08.2009
Dass organische Solarzellen Licht in Strom umwandeln können, ist bekannt. Ein Rätsel war jedoch, wie sie das machen - zumindest aus physikalischer Sicht.

Forschern der Uni Würzburg ist es nun gelungen, den Prozess aufzuklären. Die Fachzeitschrift Physical Review Letter berichtet über ihre Arbeit.

Eigentlich ist das Prinzip einer organischen Solarzelle ganz simpel. Stark vereinfacht dargestellt, funktioniert die Zelle so: Zwischen zwei "Stromabnehmern" befinden sich zwei Substanzen, die sich so wenig mischen wie Wasser und Öl. Die eine - zumeist ein Polymer - gibt Elektronen ab, wenn Licht auf sie trifft.

Die andere - in der Regel ein so genanntes Fulleren, also Kohlenstoff, der kugelförmig angeordnet ist - nimmt die Elektronen auf und leitet sie an den entsprechenden Abnehmer, die Kathode, weiter. Strom fließt. So weit das Prinzip, und so funktioniert ja auch die Praxis.

Die Ladungstrennung funktioniert nur unter ganz bestimmten Umständen

"Ja, organische Solarzellen funktionieren", sagt Vladimir Dyakonov. Und ergänzt sogleich: "Nach der bisher gängigen Theorie dürften sie das allerdings nicht." Dyakonov ist Inhaber des Lehrstuhls für Experimentelle Physik 6 an der Universität Würzburg; seit mehr als einem Jahrzehnt forscht er an den Strom-aus-Licht-Produzenten, die, anders als die bekannten Module auf Häuserdächern, nicht auf Silizium basieren, sondern statt dessen organische Substanzen verwenden. Dabei hat sich Dyakonov auch mit der Frage befasst, welche physikalischen Prozesse den Stromfluss ermöglichen. Gemeinsam mit seinem Wissenschaftlichen Mitarbeiter Carsten Deibel hat er nun eine Antwort gefunden.

"Nach den gängigen physikalischen Gesetzen sind die vom Licht erzeugten positiven und negativen Ladungen, die immer paarweise auftreten, eigentlich nur schwer zu trennen, da sie einander anziehen", erklärt Dyakonov. Die Vorstellung, Licht könne Elektronen aus einem Atom oder Molekül quasi herauskicken, stimmt nämlich nur ansatzweise. Absorbiert das Polymer Licht, entstehen in Wirklichkeit so genannte "Exzitone". Die Elektronenwolke, die um ein Molekül herumschwirrt, ändert ihre Form, es kommt zu Ladungsverschiebungen, der Physiker spricht davon, dass ein "stark gebundenes Elektron-Loch-Paar" entsteht. Wie sich das Elektron endgültig daraus befreien kann, hat Carsten Deibel untersucht.

Das Modell muss mit der Praxis übereinstimmen

Mit Hilfe von Quantenausbeute-Messungen und der Fotolumineszenz-Spektroskopie hat er die 20 bis 30 Nanometer starken Schichten organischen Materials in den Solarzellen untersucht (ein Nanometer ist der millionste Teil eines Millimeters) und dabei die Energie bestimmt, die nötig ist, um die Ladungen zu trennen. Anschließend haben er und sein Diplomand Thomas Strobel am Computer in verschiedenen Modellen die komplexe Bewegung der Ladungspaare in Polymer-Fulleren-Solarzellen nachgebildet und tatsächlich Bedingungen gefunden, unter denen das berechnete Ergebnis mit dem Befund aus der Praxis übereinstimmt.

"Der ganze Prozess funktioniert nur, wenn das Polymer eine Mindestlänge besitzt", erklärt Deibel. Erst dann kann sich das Elektron an der Grenzfläche zum Fulleren lösen und anschließend entlang der Kohlenstoffkugeln zur Kathode wandern. Der positiv geladene Rest des Exzitons hingegen bleibt im Polymer und gleitet entlang dieser Ketten zur Anode. "Wir zeigen, dass ein Ladungsträger, der sich auf einem Polymerkettensegment befindet, von der anderen Ladung umso weniger angezogen wird, je länger dieses Segment ist", sagt Vladimir Dyakonov. Unter diesen Umständen könnten sich die Ladungsträger außerdem entlang der Polymerketten wesentlich schneller bewegen als bei kurzen Segmenten. Beide Effekte zusammen ermöglichen die sehr effiziente Trennung der Ladungspaare.

Auf der Suche nach wirksamen Materialien

Tatsächlich zeigen Deibels Simulationen eine zehnfache Verbesserung des Photostromes, wenn die Länge der Polymerkettensegmente von einem auf zehn Nanometer erhöht wird. Zehn Nanometer sind typisch für die heute in der organischen Photovoltaik gebräuchlichen Polymer-Halbleiter. "Unsere Ergebnisse erklären somit, warum die derzeit besten Polymer-Fulleren-Solarzellen eine so gute Umwandlung von Licht in Strom erlauben", sagt Dyakonov.

Nachdem das Rätsel, warum Polymer-Fulleren-Solarzellen entgegen aller Theorie doch funktionieren, gelöst ist, arbeiten Dyakonov und Deibel jetzt daran, die grundlegenden Prozesse noch besser zu verstehen. Ihr Ziel ist es, mit diesem Wissen in die Entwicklung zu gehen und zusammen mit Chemikern neue Polymere zu konstruieren, die das eingestrahlte Licht effektiver als bisher in Strom umwandeln.

360 Millionen Euro für Forschungsprojekte zur organischen Photovoltaik

60 Millionen Euro hat das Bundesforschungsministerium für Bildung und Forschung (BMBF) für Forschungsprojekte auf dem Gebiet der "Organische Photovoltaik" zur Verfügung gestellt, weitere 300 Millionen sollen von der Wirtschaft kommen. Unter den zahlreichen Anträgen wurden weniger als zwei Dutzend als förderungswürdig eingestuft. Drei davon stammen aus der Universität Würzburg. Dyakonovs und Deibels Arbeit ist im Rahmen des Projekts "Einfluss von Kontakten und interner Grenzflächen auf die makroskopischen Kenngrößen organischer Solarzellen" entstanden. Neben Dyakonovs Lehrstuhl sind daran beteiligt der Lehrstuhl für Experimentelle Physik 2 (Professor Friedrich Reinert) und das Zentrum für Angewandte Energieforschung Bayern (ZAE), das eng mit Dyakonov zusammenarbeitet. Für ihre Forschung erhalten die Wissenschaftler in diesem Projekt 1,4 Millionen Euro im Zeitraum von 2009 bis 2012.

Die Vorteile organischer Solarzellen

Organische Solarzellen sind zwar noch nicht in der Lage Sonnenlicht ähnlich effizient in Strom umzuwandeln wie ihre Konkurrenten, die mit Silizium arbeiten. Während Letztere einen Wirkungsgrad von etwa 30 Prozent schaffen, kommen organische Zellen auf knapp sechs Prozent. Ihre Stärken liegen allerdings woanders: Weil sie auch transparent sein können, bieten sie sich beispielsweise für den Einsatz in Gebäuden an, wo sie Licht durchlassen und gleichzeitig Strom produzieren. Ihre Flexibilität prädestiniert sie für den mobilen Einsatz, beispielsweise auf Rucksäcken, die Handyakkus aufladen. Außerdem sind organische Solarzellen vergleichsweise einfach herzustellen. Im Prinzip können normale Druckmaschinen die Substanzen auf ein billiges Trägermaterial aufbringen wie Farbe auf große Papierrollen. Die Produktionskosten sind dabei vergleichsweise niedrig. Organische Solarzellen sind deshalb, wie Vladimir Dyakonov sagt, "vielversprechende Kandidaten für eine effiziente, preisgünstige Photovoltaik".

Origin of the Ef?cient Polaron Pair Dissociation in Polymer-Fullerene Blends, C. Deibel, T. Strobel, V. Dyakonov, Phys. Rev. Lett 2009. http://link.aps.org/doi/10.1103/PhysRevLett.103.036402

Kontakt:
Prof. Dr. Vladimir Dyakonov, T: (0931) 31 83 111,
E-Mail:dyakonov@physik.uni-wuerzburg.de
Dr. Carsten Deibel, T: (0931) 31-83 119,
E-Mail: deibel@physik.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warum der Brennstoffzelle die Luft wegbleibt

28.03.2017 | Biowissenschaften Chemie

Chlamydien: Wie Bakterien das Ruder übernehmen

28.03.2017 | Biowissenschaften Chemie

Sterngeburt in den Winden supermassereicher Schwarzer Löcher

28.03.2017 | Physik Astronomie