Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trennung von Blutzellen im Mikrofluss

24.05.2012
Von Augsburger Physikern entwickelte Methode nutzt die Liftkraft im laminaren Fluss zur Separierung von roten Blutkörperchen und Blutplättchen. / Breite Anwendungsmöglichkeiten in "Lab-on-a-Chip"-Systemen zur medizinischen Diagnostik und zur Zellaufbereitung.

Eine neue Methode zur Auftrennung von Blutzellen hat die Mikrofluidikgruppe von Dr. Thomas Franke am Lehrstuhl für Experimentalphysik I der Universität Augsburg jetzt in den "Applied Physics Letters" vorgestellt.

Ein hydrodynamischer Effekt, die sogenannte Liftkraft, sorgt dafür, dass sich deformierbare Teilchen in winzigen Kanälen von der Größenordnung menschlicher Kapillaren von der Wand entfernen. Je nachdem wie groß oder deformierbar die Zellen sind, bewegen sie sich unterschiedlich schnell Richtung Kanalmitte. Dies führt am Ende des Mikrokanals zu einem Positionsunterschied, der zur Trennung der Zellen genutzt werden kann. Anwendungsmöglichkeiten dieser Methode liegen einerseits in der medizinischen Diagnose weit verbreiteter Krankheiten wie Malaria, Diabetes oder Bluthochdruck, andererseits lässt sie sich auch zur Aufbereitung von Zellen in Laboren nutzen.

Welche physikalischen Effekte spielen im Blutfluss eine Rolle? Wie verhalten sich rote Blutkörperchen in menschlichen Blutgefäßen? Was können wir daraus lernen und können wir diese Effekte sinnvoll nutzen? Antworten auf diese Fragen sucht das Team von Franke bereits seit einigen Jahren. Mikrofluidik, die Wissenschaft von der Strömung kleiner Flüssigkeits- oder Gasmengen, spielt dabei eine wichtige Rolle. In Kanälen der Größe eines menschlichen Haares treten nämlich Effekte auf, die wir aufgrund unserer makroskopischen Alltagserfahrungen nicht kennen und so nicht erwarten.

Ein Beispiel hierfür ist der laminare Fluss, in dem Flüssigkeiten wirbelfrei nebeneinander fließen können. Die Flüssigkeit fließt hierbei in Schichten, die sich nicht miteinander vermischen. Ein gänzlich neuer Effekt tritt jedoch auf, wenn sich deformierbare Objekte, wie beispielsweise biologische Zellen in einem solchen laminaren Fluss bewegen. Diese können sich nämlich sehr wohl quer zur Strömungsrichtung bewegen, und so in benachbarte Strömungsschichten gelangen. In der Nähe einer begrenzenden Wand ist dieser Effekt immer so gerichtet, dass die Zellen sich von dieser entfernen. Dieser hydrodynamische Lift-Effekt ist desto stärker ausgeprägt, je größer und weicher die Zellen sind.

Im menschlichen Körper führt dies dazu, dass die großen und weichen roten Blutkörperchen zumeist in der Mitte der Blutgefäße fließen, was den Strömungswiderstand enorm verringert, während die (kleineren) Blutplättchen näher an der Wand bleiben, wo sie im Falle einer Verletzung für den Wundverschluss gebraucht werden.

Imitation des Blutflusses auf einem Mikrochip

Dass dieser Effekt bionisch, also auf dem Weg einer technischen Umsetzung biologischer Prinzipien, auf einem kleinen Chip imitiert und zum Trennen von Zellen genutzt werden kann, haben die Augsburger Wissenschaftler nun folgendermaßen experimentell nachgewiesen: Sie injizierten eine Mischung aus Blutzellen in einen rechteckigen Mikrokanal mit einer Kantenlänge von 100 Mikrometern im Querschnitt (vgl. Abb. 1). Dort werden die Zellen zunächst von einem weiteren Zufluss an den Kanalboden gedrückt, bevor sie sich auf den Weg durch den 2 Zentimeter langen Kanal machen. Am ersten Messpunkt (x1) sind die roten Blutkörperchen und die Blutplättchen noch durchmischt und im Mittel auf gleicher Höhe. Auf ihrem Weg durch den Kanal steigen die roten Blutkörperchen dann aber deutlich weiter zur Kanalmitte hin als die Blutplättchen, so dass Blutkörperchen und Blutplättchen am Punkt x2 also voneinander getrennt werden können. Dass dieser Effekt nicht nur von der Größe der Zellen abhängt, sondern auch von ihrer Deformierbarkeit und Form, konnte durch die erfolgreiche Trennung von Blutplättchen und gleich großen Polystyrolkügelchen nachgewiesen werden.

"Der große Vorteil unserer Methode ist, dass sie sich in Form eines Einwegartikels umsetzen lässt und zum Antrieb des Flusses nicht einmal eine Pumpe benötigt wird", erläutert Thomas Geislinger, Erstautor der Veröffentlichung. Das wenige Zentimeter große System erfülle damit die Kriterien für die Integration in sogenannte "Lab-on-a-Chip"-Systeme, es werde sich also als Teil eines kleinen Labors auf einem einzigen Mikrochip nutzen lassen.

Solche Minilabore finden in der Medizin zur Diagnose von zahlreichen Krankheiten wie Malaria, Diabetes oder Bluthochdruck Verwendung. Da sie billig sind und fast überall betrieben werden können, ist ihre Entwicklung insbesondere für die medizinische Versorgung in Entwicklungsländern von enormer Bedeutung.
Originalveröffentlichung:

T. M. Geislinger, B. Eggart, S. Braunmüller, L. Schmid, and T. Franke, Separation of blood cells using hydrodynamic lift, Applied Physics Letters, Vol. 100, p. 183701 (2012); DOI: 10.1063/1.4709614 ( http://apl.aip.org/resource/1/applab/v100/i18/p183701_s1 )

Ansprechpartner:
Dipl.-Phys. Thomas Geislinger
Microfluidics and Biological Physics Group
Experimentalphysik I
Universität Augsburg
Telefon +49(0)821-598-3311
thomas.geislinger@physik.uni-augsburg.de

PD Dr. Thomas Franke
Group Leader Microfluidics and Biological Physics
Experimentalphysik I
Universität Augsburg
Telefon: +49 (0)8 21 598-3312
thomas.franke@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.physik.uni-augsburg.de/exp1/mitarbeiter/franke_thomas/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Durchbruch mit einer Kette aus Goldatomen
17.02.2017 | Universität Konstanz

nachricht Zukunftsmusik: Neues Funktionsprinzip zur Erzeugung der „Dritten Harmonischen“
17.02.2017 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Im Focus: Weltweit genaueste und stabilste transportable optische Uhr

Optische Strontiumuhr der PTB in einem PKW-Anhänger – für geodätische Untersuchungen, weltweite Uhrenvergleiche und schließlich auch eine neue SI-Sekunde

Optische Uhren sind noch genauer als die Cäsium-Atomuhren, die gegenwärtig die Zeit „machen“. Außerdem benötigen sie nur ein Hundertstel der Messdauer, um eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

Ökologischer Landbau: Experten diskutieren Beitrag zum Grundwasserschutz

17.02.2017 | Veranstaltungen

Von DigiCash bis Bitcoin

16.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks

17.02.2017 | Biowissenschaften Chemie

LODENFREY setzt auf das Workforce Mangement von GFOS

17.02.2017 | Unternehmensmeldung

50 Jahre JULABO : Erfahrung – Können & Weiterentwicklung!

17.02.2017 | Unternehmensmeldung