Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trennung von Blutzellen im Mikrofluss

24.05.2012
Von Augsburger Physikern entwickelte Methode nutzt die Liftkraft im laminaren Fluss zur Separierung von roten Blutkörperchen und Blutplättchen. / Breite Anwendungsmöglichkeiten in "Lab-on-a-Chip"-Systemen zur medizinischen Diagnostik und zur Zellaufbereitung.

Eine neue Methode zur Auftrennung von Blutzellen hat die Mikrofluidikgruppe von Dr. Thomas Franke am Lehrstuhl für Experimentalphysik I der Universität Augsburg jetzt in den "Applied Physics Letters" vorgestellt.

Ein hydrodynamischer Effekt, die sogenannte Liftkraft, sorgt dafür, dass sich deformierbare Teilchen in winzigen Kanälen von der Größenordnung menschlicher Kapillaren von der Wand entfernen. Je nachdem wie groß oder deformierbar die Zellen sind, bewegen sie sich unterschiedlich schnell Richtung Kanalmitte. Dies führt am Ende des Mikrokanals zu einem Positionsunterschied, der zur Trennung der Zellen genutzt werden kann. Anwendungsmöglichkeiten dieser Methode liegen einerseits in der medizinischen Diagnose weit verbreiteter Krankheiten wie Malaria, Diabetes oder Bluthochdruck, andererseits lässt sie sich auch zur Aufbereitung von Zellen in Laboren nutzen.

Welche physikalischen Effekte spielen im Blutfluss eine Rolle? Wie verhalten sich rote Blutkörperchen in menschlichen Blutgefäßen? Was können wir daraus lernen und können wir diese Effekte sinnvoll nutzen? Antworten auf diese Fragen sucht das Team von Franke bereits seit einigen Jahren. Mikrofluidik, die Wissenschaft von der Strömung kleiner Flüssigkeits- oder Gasmengen, spielt dabei eine wichtige Rolle. In Kanälen der Größe eines menschlichen Haares treten nämlich Effekte auf, die wir aufgrund unserer makroskopischen Alltagserfahrungen nicht kennen und so nicht erwarten.

Ein Beispiel hierfür ist der laminare Fluss, in dem Flüssigkeiten wirbelfrei nebeneinander fließen können. Die Flüssigkeit fließt hierbei in Schichten, die sich nicht miteinander vermischen. Ein gänzlich neuer Effekt tritt jedoch auf, wenn sich deformierbare Objekte, wie beispielsweise biologische Zellen in einem solchen laminaren Fluss bewegen. Diese können sich nämlich sehr wohl quer zur Strömungsrichtung bewegen, und so in benachbarte Strömungsschichten gelangen. In der Nähe einer begrenzenden Wand ist dieser Effekt immer so gerichtet, dass die Zellen sich von dieser entfernen. Dieser hydrodynamische Lift-Effekt ist desto stärker ausgeprägt, je größer und weicher die Zellen sind.

Im menschlichen Körper führt dies dazu, dass die großen und weichen roten Blutkörperchen zumeist in der Mitte der Blutgefäße fließen, was den Strömungswiderstand enorm verringert, während die (kleineren) Blutplättchen näher an der Wand bleiben, wo sie im Falle einer Verletzung für den Wundverschluss gebraucht werden.

Imitation des Blutflusses auf einem Mikrochip

Dass dieser Effekt bionisch, also auf dem Weg einer technischen Umsetzung biologischer Prinzipien, auf einem kleinen Chip imitiert und zum Trennen von Zellen genutzt werden kann, haben die Augsburger Wissenschaftler nun folgendermaßen experimentell nachgewiesen: Sie injizierten eine Mischung aus Blutzellen in einen rechteckigen Mikrokanal mit einer Kantenlänge von 100 Mikrometern im Querschnitt (vgl. Abb. 1). Dort werden die Zellen zunächst von einem weiteren Zufluss an den Kanalboden gedrückt, bevor sie sich auf den Weg durch den 2 Zentimeter langen Kanal machen. Am ersten Messpunkt (x1) sind die roten Blutkörperchen und die Blutplättchen noch durchmischt und im Mittel auf gleicher Höhe. Auf ihrem Weg durch den Kanal steigen die roten Blutkörperchen dann aber deutlich weiter zur Kanalmitte hin als die Blutplättchen, so dass Blutkörperchen und Blutplättchen am Punkt x2 also voneinander getrennt werden können. Dass dieser Effekt nicht nur von der Größe der Zellen abhängt, sondern auch von ihrer Deformierbarkeit und Form, konnte durch die erfolgreiche Trennung von Blutplättchen und gleich großen Polystyrolkügelchen nachgewiesen werden.

"Der große Vorteil unserer Methode ist, dass sie sich in Form eines Einwegartikels umsetzen lässt und zum Antrieb des Flusses nicht einmal eine Pumpe benötigt wird", erläutert Thomas Geislinger, Erstautor der Veröffentlichung. Das wenige Zentimeter große System erfülle damit die Kriterien für die Integration in sogenannte "Lab-on-a-Chip"-Systeme, es werde sich also als Teil eines kleinen Labors auf einem einzigen Mikrochip nutzen lassen.

Solche Minilabore finden in der Medizin zur Diagnose von zahlreichen Krankheiten wie Malaria, Diabetes oder Bluthochdruck Verwendung. Da sie billig sind und fast überall betrieben werden können, ist ihre Entwicklung insbesondere für die medizinische Versorgung in Entwicklungsländern von enormer Bedeutung.
Originalveröffentlichung:

T. M. Geislinger, B. Eggart, S. Braunmüller, L. Schmid, and T. Franke, Separation of blood cells using hydrodynamic lift, Applied Physics Letters, Vol. 100, p. 183701 (2012); DOI: 10.1063/1.4709614 ( http://apl.aip.org/resource/1/applab/v100/i18/p183701_s1 )

Ansprechpartner:
Dipl.-Phys. Thomas Geislinger
Microfluidics and Biological Physics Group
Experimentalphysik I
Universität Augsburg
Telefon +49(0)821-598-3311
thomas.geislinger@physik.uni-augsburg.de

PD Dr. Thomas Franke
Group Leader Microfluidics and Biological Physics
Experimentalphysik I
Universität Augsburg
Telefon: +49 (0)8 21 598-3312
thomas.franke@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.physik.uni-augsburg.de/exp1/mitarbeiter/franke_thomas/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften