Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tod eines Moleküls gefilmt

07.08.2013
Um Moleküle in ihre atomaren Bestandteile zu zerlegen, verwenden Forscher starke Laserpulse. Doch während es beim Teilen von Kuchen in zwei gleich große Stücke lediglich auf das Augenmaß ankommt, hat das „Laser-Messer“ einen direkten Einfluss auf die Bruchstücke.

Ein starker Laserpuls, der zur Spaltung eines Wasserstoffmoleküls verwendet wird, beeinflusst unmittelbar die Entstehung der Bruchstücke. Das konnte die Arbeitsgruppe von Prof. Reinhard Dörner kürzlich nachweisen, als sie den Prozess erstmals auf einer unvorstellbar kurzen Zeitskala „filmte“.


Ultraschnelle Filmkamera: Der Laserpuls (orange Spirale im Vordergrund) spaltet das Molekül und dient gleichzeitig als ultraschnelles Uhrwerk. Die einzelnen Bilder des zerbrechenden Moleküls werden auf der linken blauen Platte aufgenommen, während der Zeitpunkt des Entstehens auf der rechten roten Platte (mit Uhr) registriert wird.
AK Dörner, Goethe-Universität

Wie die Physiker in der Fachzeitschrift Nature Communications mitteilen, ist ihre Methode robust und leistungsfähig, so dass sie künftig dazu dienen könnte, auch andere ultrakurze atomare Prozesse zu beobachten.

Die Teilung eines Wasserstoffmoleküls, bestehend aus zwei Protonen und zwei Elektronen, kann nicht „gerecht“ ausgehen. Sie beginnt damit, dass eines der Elektronen durch einen kurzen, energiereichen Laserpuls aus dem Molekül heraus katapultiert wird. Das verbleibende Elektron verbindet sich dann mit einem der Protonen zu einem Wasserstoffatom, während das andere Proton leer ausgeht. „Man könnte meinen, dass es dem Zufall überlassen ist, wo das Elektron landet. Tatsächlich wird es aber durch das Laserlicht gesteuert“, erklärt Dörner.

Dieser Prozess läuft so schnell ab, dass er bisher nicht beobachtet werden konnte. Deshalb kamen Dörner und seine Mitarbeiter auf die Idee, das schwingende Lichtfeld des Lasers selbst als ultraschnelles und ultrapräzises Uhrwerk zu verwenden. „Eine Umdrehung dieser Uhr dauert 2.7 Femtosekunden, also 2,7 Millionstel einer Milliardstel Sekunde. Eines der beiden Elektronen aus dem Wasserstoff dient als Uhrzeiger, den wir mit COLTRIMS ablesen“, so Dörner.

COLTRIMS ist ein in Frankfurt entwickeltes Reaktionsmikropskop, mit dem man die Richtung und Energie aller geladenen Fragmente eines solchen Prozesses rekonstruieren kann. Dank dieser Technik konnten die Physiker jedem Molekülfragment die Zeit seiner Entstehung zuordnen und damit die Einzelbilder in der richtigen zeitlichen Reihenfolge zu einem Film zusammensetzen.

Publikation:
J. Wu et. al.: Understanding the role of phase in chemical bond breaking with coincidence angular streaking, in: nature communications, 19.7.2013, DOI: 10.1038/ncomms3177

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.nature.com/naturecommunications

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik