Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tobias Hertel erforscht Nanoröhren

23.12.2008
Ein Sammelsurium aus Kohlenstoff-Nanoröhren fein säuberlich zu sortieren: Wenn es um diese schwierige Aufgabe geht, gehört die Arbeitsgruppe von Professor Tobias Hertel zu den besten in Deutschland. Aber der neue Inhaber des Lehrstuhls für Physikalische Chemie II der Uni Würzburg hat in Sachen Nanoröhren noch andere Interessen.

Nanoröhren: Diese winzigen Gebilde aus reinem Kohlenstoff sind tausendmal dünner als menschliche Haare. Ihre elektrische Leitfähigkeit ist hervorragend, manche sind extrem reißfest und stärker als Stahl. Sie kommen für viele Anwendungen in Frage. Für die Computertechnik, für stoßdämpfende Materialien, für flexible und selbstleuchtende Displays, für Rastertunnel-Elektronenmikroskope und mehr.

Produziert werden Nanoröhren mit verschiedenen Methoden. Dabei lässt sich bislang aber nur sehr schwer steuern, wie dick und wie lang die Röhrchen ausfallen oder wie ihr Kohlenstoffgerüst aussieht. Das Ergebnis der Herstellung ist ein flockiger Ruß, der zwischen zehn und fünfzig Röhrentypen enthalten kann.

"Wir kaufen den Ruß und bereiten ihn so auf, dass wir am Ende eine Suspension haben, in der nur noch ein einziger Röhrentyp drin ist", sagt Hertel. Dieses Verfahren ist aufwändig. Unter anderem muss der Ruß mit geeigneten Flüssigkeiten emulgiert und auf spezielle Weise zentrifugiert werden, damit sich die Röhrentypen trennen lassen. In Deutschland gebe es zum Beispiel am Forschungszentrum Karlsruhe eine weitere Gruppe, die über das Knowhow verfügt.

Das erforscht Tobias Hertels Team

Wenn die Nanoröhren voneinander getrennt sind, fängt die eigentliche Forschungsarbeit an. Tobias Hertels Team interessiert sich vor allem für die optischen Eigenschaften der Nanoröhren. Für die Art, wie sie Lichtenergie aufnehmen, weiterleiten und wieder abgeben. "Das Wissen über diese Vorgänge ist grundlegend für spätere Anwendungen, etwa in der Photovoltaik", sagt der neue Lehrstuhlinhaber. "Eines unserer Ziele ist es auch, aus Nanoröhren fluoreszierende Farbstoffe für die biomedizinische Forschung zu entwickeln."

Tobias Hertel befasst sich vor allem mit so genannten (6,5)-Nanoröhren: "Die können wir am reinsten herstellen." Suspensionen mit diesem Röhrentyp sehen blau bis violett aus. Mit ihnen ist dem Würzburger Professor erst im November ein Forschungserfolg gelungen. Gemeinsam mit Kollegen aus Mailand konnte er weltweit erstmals die Größe von Exzitonen in Nanoröhren messen. Publiziert wurde das Ergebnis im renommierten Fachblatt Nature Physics.

Der Lebenslauf von Tobias Hertel

1966 wurde Tobias Hertel in Freiburg geboren. Er studierte Physik an der Freien sowie an der Technischen Universität Berlin. Sein Diplom und die Doktorarbeit machte er am Fritz-Haber-Institut (Berlin) der Max-Planck-Gesellschaft - bei einem Mann, der später berühmt werden sollte: bei Professor Gerhard Ertl, dem Nobelpreisträger für Chemie des Jahres 2007.

Als Postdoc ging Hertel mit einem Stipendium der Humboldt-Stiftung in die USA. Dort begann er am IBM T.J. Watson-Forschungszentrum, sich mit Nanoröhren zu beschäftigen. Eine spannende Zeit: "Ich habe dort einen der ersten Feldeffekt-Transistoren auf Basis von Kohlenstoff-Nanoröhren mitentwickelt und auch selber einige davon hergestellt." Die Publikation darüber erregte großes Aufsehen: Bislang wurde sie rund 1200 Mal zitiert, und eine so hohe Zahl wird bei wissenschaftlichen Arbeiten nur sehr selten erreicht.

1998 kehrte Hertel nach Berlin ans Fritz-Haber-Institut zurück - und brachte die Nanoröhren als Forschungsobjekte mit. Er habilitierte sich und ging 2004 wieder in die USA. Dort wurde er Associate Professor an der Vanderbilt University in Nashville (Tennessee).

Zum August 2008 folgte Tobias Hertel dem Ruf an die Uni Würzburg, wo er die Nachfolge von Professor Wolfgang Kiefer angetreten hat. Warum Würzburg? "Die Arbeitsbedingungen, die Ressourcen und die Infrastruktur sind für unsere Forschung hier weitaus besser als in den USA."

Prof. Dr. Tobias Hertel, T (0931) 888-6300, tobias.hertel@uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie