Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tiefkalte Moleküle auf der Umlaufbahn

21.05.2015

Erstes Experiment im ultrakalten Speicherring CSR des MPI für Kernphysik

Nach langjähriger Entwicklungs- und Bauzeit konnten Physiker des MPI für Kernphysik jetzt zum ersten Mal negativ geladene Moleküle, und zwar Hydroxidionen (OH–), bei wenigen Grad über dem absoluten Nullpunkt in ihrem neuartigen Speicherring auf der Umlaufbahn halten und mit ihnen experimentieren.


Einblicke in den ultrakalten Speicherring CSR am Max-Planck-Institut für Kernphysik während der Bauphase.

Fotos: MPIK


Ein Laserstrahl neutralisiert einige der Ionen, so dass wenige OH-Radikale den Ring verlassen und nachgewiesen werden. Ohne Laser ist die Rate extrem gering: ein Zeichen für das extrem gute Vakuum.

Grafik: MPIK

Der CSR (Cryogenic Storage Ring), ein weltweit einzigartiger elektrostatischer Speicherring für Ionen, ist für den Betrieb bei tiefsten Temperaturen optimiert. Mit ihm ist es nun möglich, die Chemie in interstellaren Wolken auf der Erde zu erforschen und grundlegende Einblicke in das ‚Innenleben‘ von Molekülen zu gewinnen.

Fast drei Wochen dauerte es, bis der neue ultrakalte Speicherring (CSR, Cryogenic Storage Ring) auf ca. –265 °C, also wenige Grad über dem absoluten Nullpunkt abgekühlt war. Dabei sank der Druck ersten Abschätzungen zufolge auf unter 10hoch-13 mbar, das ist mindestens 10hoch16-mal niedriger als normaler Luftdruck und schwierig exakt zu messen.

Bald darauf gelang es positiv geladene Argonionen (Ar+) im Ring kreisen zu lassen. Diese Tests gaben grünes Licht für das erste Experiment: „Wir haben Hydroxidionen (OH–) in unserer Ionenquelle präpariert, in den CSR eingeschossen und dort für mehr als zehn Minuten auf der Umlaufbahn gehalten – das ist an sich schon ein Erfolg“, erläutert Andreas Wolf, Experimentator und an der Entwicklung des CSR beteiligt. „Aber wir wollen natürlich wissen, ob sie auch wirklich auf Temperaturen wie im interstellaren Raum abgekühlt sind.“

Dazu kommt ein durchstimmbarer Laser zum Einsatz. Sein Strahl trifft die gespeicherten OH–-Ionen, so dass diese ein Elektron verlieren. Es entstehen OH-Radikale, die – da ungeladen – aus der Bahn fliegen und auf einem Detektor landen. Bei welcher Laserfrequenz (Farbe) dies passiert, zeigt an, in welchem Energieniveau sich das getroffene OH–-Ion befand, d.h., wie viel innere Energie es besaß.

Eine erste Auswertung der Daten ergab, dass nicht nur die interne Schwingung der OH–-Ionen, sondern auch ihre Rotation überwiegend den niedrigsten Zustand erreicht hatte, Anzeichen dafür, dass die Moleküle während der Speicherzeit im CSR also tatsächlich interstellare Temperaturen annehmen.

„Es sieht also ganz danach aus, als ob unsere neue ‚Maschine‘ alle Erwartungen erfüllt“, freut sich Klaus Blaum, Direktor und Leiter der Abteilung Gespeicherte und gekühlte Ionen am MPIK. „Der CSR wird seine Stärken bei unseren geplanten Experimenten zur Chemie des Weltraums voll ausspielen können“, fügt Holger Kreckel, Leiter der ERC-Starting-Grant-Gruppe ASTROLAB am MPIK, hinzu.

Mit dem CSR hat das MPI für Kernphysik (MPIK) eine neuartige Konstruktion für einen ultrakalten Ionenspeicherring erfolgreich realisiert. „Die rein elektrostatische Ionenoptik, extrem niedriger Druck und sehr tiefe Temperaturen erlauben es, darin auch sehr große Molekülionen in niedrigsten Quantenzuständen zu speichern“, bringt Robert von Hahn, der die Entwicklung des CSR geleitet hat, dessen wichtigste Merkmale auf den Punkt.

Die Physiker des MPIK haben mit dem CSR nun ein weltweit einzigartiges Werkzeug für ihre grundlegenden Experimente zur Verfügung. Das MPIK dankt der Max-Planck-Gesellschaft, dass sie Entwicklung und Bau des CSR finanziert hat. An der Realisierung des CSR beteiligt war das Weizmann-Institut in Rehovot (Israel). Zukünftige Forschungsarbeiten sind über dieses Institut hinaus u.a. geplant mit den Universitäten Heidelberg, Gießen, Greifswald und Kaiserslautern, der Columbia University, New York, und der Universität von Louvain-la-Neuve, Belgien.

Wozu ein ultrakalter Speicherring?

In interstellaren Wolken sind die Teilchendichten extrem gering. Die Temperaturen sinken sehr nahe an den absoluten Nullpunkt heran, bis auf –263 °C (bzw. 10 K). Deshalb geht die interstellare Chemie völlig andere Pfade, als wir sie hier auf der Erde gewohnt sind. Trotz dieser widrigen Umstände wurden bereits mehr als 180 verschiedene Moleküle im Weltraum entdeckt. Um zu verstehen, wie interstellare Moleküle entstehen und überleben können, sind Experimente unter vergleichbaren Bedingungen erforderlich.

Als Schlüssel zur molekularen Vielfalt hat man Prozesse zwischen geladenen Molekülen, den Molekülionen, und neutralen Atomen und Molekülen ausgemacht. Freie Molekülionen sind hoch reaktiv, weshalb sie nur im extremen Vakuum längere Zeit bestehen können.

Das Innenleben der Moleküle wird durch die Quantendynamik ihrer Atomkerne und Elektronen bestimmt. Wechselwirkungen mit anderen Molekülen, Licht oder Wärmestrahlung können die Atome innerhalb der Moleküle anregen und chemische Reaktionen auslösen oder die Moleküle zum Leuchten bringen. Empfindliche Beobachtungen molekularer Prozesse erlauben somit einen Blick in die submikroskopische Vielteilchen-Quantendynamik innerhalb der Moleküle, als Grundlage der Chemie.

Der ultrakalte Speicherring CSR

Ein neues, einzigartiges Werkzeug für solche Experimente ist der kryogene Speicherring CSR am MPIK. In extrem hohem Vakuum, erzeugt durch tiefste Temperaturen, werden Ionenstrahlen gespeichert. Auch für schwere Moleküle, sogar für Cluster aus mehreren Molekülen, ist der CSR geeignet. Auf ihrem 35,4 m langen Rundkurs durch den Speicherring durchqueren sie vier geradlinige Wechselwirkungsstrecken. Hier stoßen sie auf andere atomare Teilchen oder auf Laserstrahlung, und hier liefern leistungsfähige Nachweisgeräte Daten zu einzelnen molekularen Reaktionsprozessen.

Für Experimente mit sehr schweren Molekülen oder Clustern kommt nur eine rein elektrostatische Ionenoptik in Frage; geeignete magnetische Ablenksysteme müssten riesige Ausmaße annehmen. Die ablenkenden und fokussierenden elektrostatischen Einheiten sitzen im Gegensatz zu einem magnetischen System innerhalb der Vakuumkammer. Insgesamt kommen 16 Quadrupoleinheiten zur Strahlfokussierung und 16 Ablenkeinheiten zum Einsatz. Ein viel höheres Vakuum als in anderen Ionenspeicherringen ist erforderlich: Im CSR muss die Dichte 1016-mal kleiner als in der Atmosphäre sein, entsprechend einem Druck von unter 10−13 mbar.

Die Vakuumkammer, die den Ionenstrahl im CSR umgibt, hat eine Temperatur von ca. −263 °C. An 28 im Ring verteilten Stellen ist die Temperatur noch tiefer (nahe −271 °C), um auch die flüchtigsten Bestandteile der Luft an einer kalten Oberfläche auszufrieren. Eine Kältemaschine verteilt flüssiges Helium (anfangs im superflüssigen Zustand) in einem Rohrsystem, das den Ring vielmals umläuft. Nach dem Zwiebelschalen-Prinzip schirmen innere Wände auf −230 °C bzw. −180 °C die irdische Wärmestrahlung ab. All dies befindet sich in einem äußeren Vakuumsystem – dem Isoliervakuum, das die Wärmeleitung nach außen unterbindet.

Das mechanische Design ist durch die Tieftemperatur-Anforderung bestimmt. Fast jedes Material schrumpft bei Kälte; ein 1 m langes Edelstahlrohr etwa um 3 mm zwischen 20 °C und −263 °C. Flexible Metallbälge entkoppeln die Bauteile, und alle Komponenten der Ionenoptik sind separat auf stabilen Betonsockeln verankert.

Entwicklung und Bau des CSR

Wegen der technologischen Herausforderungen wurde zu Projektbeginn ein 4 m langer Prototyp entwickelt, der 2009 als erster Meilenstein erfolgreich in Betrieb ging. An ihm wurde das kryogene und mechanische Konzept überprüft und die Erreichbarkeit eines Vakuums unterhalb von 10−13 mbar in einem so großen System demonstriert. Seitdem dient er für vielfältige Experimente mit Clusterionen in kalter Umgebung. 2011 und 2012 konnte ein erster Quadrant des Speicherrings erfolgreich abgekühlt und damit die geforderten extrem niedrigen Temperaturen an den Experimentiervakuumkammern sowie die Stabilität der CSR-Ionenoptik bestätigt werden.

Im März 2014 erreichte der CSR einen weiteren wichtigen Meilenstein, als ein injizierter Ar+-Strahl für viele hundert Durchgänge auf einer stabilen Bahn im noch nicht gekühlten Ring gespeichert werden konnte. Diese Tests bestätigten die hoch präzise Realisierung der Ionenoptik und die Qualität ihrer Planung aufgrund theoretischer Modelle und Berechnungen. Gleichzeitig wurden auch für spätere Experimente wichtige Teilchendetektoren erprobt.

Ionenstrahlen für die Speicherung im CSR werden in einer Ionenchemie-Plattform erzeugt und mit bis zu 300 kV Hochspannung in den CSR injiziert. Außerdem wird der CSR mit einer Apparatur zum Einschießen von neutralen Atomstrahlen gekoppelt und erhält in Kürze einen Elektronenkühler, um den gespeicherten Ionenstrahl zu komprimieren.


Kontakt:

Prof. Dr. Klaus Blaum
Tel.: 06221 516850
E-Mail: klaus.blaum(at)mpi-hd.mpg.de

Dr. Robert von Hahn
Tel.: 06221 516396
E-Mail: robert.von.hahn(at)mpi-hd.mpg.de

Prof. Dr. Andreas Wolf
Tel.: 06221 516503
E-Mail: andreas.wolf(at)mpi-hd.mpg.de

Dr. Holger Kreckel
Tel.: 06221 516517
E-Mail: holger.kreckel(at)mpi-hd.mpg.de

Weitere Informationen:

http://www.mpi-hd.mpg.de/mpi/de/abteilungen/abteilung-blaum/ - Abteilung Gespeicherte und gekühlte Ionen am MPI für Kernphysik
http://www.mpi-hd.mpg.de/mpi/astrolab/ - ERC-Starting-Grant-Gruppe ASTROLAB am MPI für Kernphysik

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung