Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tiefgekühlte Neutronen für die Wissenschaft: UCN sollen Rätsel der Astrophysik lösen

04.05.2011
Mainz verfügt über die leistungsstärkste Quelle für ultrakalte Neutronen – Weg frei für Flaggschiff-Experiment zur Lebensdauerbestimmung des Neutrons

Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) haben die derzeit stärkste Quelle für ultrakalte Neutronen aufgebaut. Ultrakalte Neutronen – die Abkürzung UCN leitet sich vom englischen Begriff „ultra-cold neutron“ ab – wurden in Mainz zum ersten Mal vor fünf Jahren erzeugt.

Sie sind wesentlich langsamer als thermische Neutronen und zeichnen sich dadurch aus, dass sie in geeigneten Gefäßen gespeichert werden können. Diese Eigenschaft macht sie zu einem wichtigen Werkzeug für Experimente, mit denen Fragen zur Dominanz von Materie gegenüber Antimaterie im Universum oder zur Entstehung der leichtesten Elemente direkt nach dem Urknall erforscht werden können.

„Wir haben eine neue UCN-Quelle in Betrieb genommen und das Verfahren insgesamt so verbessert, dass wir nun wesentlich mehr ultrakalte Neutronen erzeugen und speichern können als bisher und als irgendjemand sonst“, erklärt Univ.-Prof. Dr. Werner Heil vom Institut für Physik. Mit einer Dichte von bislang 10 UCN pro Kubikzentimeter setzen sich die Mainzer Wissenschaftler, beteiligt sind sowohl Chemiker als auch Physiker, an die Weltspitze auf diesem Forschungsgebiet.

Den Mainzern war 2006 in einer Kooperation mit der TU München zum ersten Mal die Herstellung von ultrakalten Neutronen an einem gepulsten TRIGA-Reaktor gelungen. Bei dem Verfahren werden zunächst im Forschungsreaktor TRIGA Mainz durch Kernspaltung Neutronen erzeugt. Diese Spaltneutronen haben Geschwindigkeiten bis 30.000 Kilometer pro Sekunde – das ist ein Zehntel der Lichtgeschwindigkeit. Noch im Reaktor werden sie durch Wechselwirkung mit leichten Atomkernen auf eine „thermische“ Geschwindigkeit von 2.200 Meter pro Sekunde abgebremst. Dann kommt die Entwicklung der Mainzer Wissenschaftler zum Tragen: Ein Rohr von insgesamt drei Meter Länge wird in den Reaktor an die Stelle des höchsten thermischen Neutronenflusses geschoben. In diesem Rohr werden die thermischen Neutronen extrem verlangsamt.

Bei der neuen UCN-Quelle im Strahlrohr D des TRIGA Mainz, die gerade die erste Heißerprobung hinter sich hat, erfolgt die Abbremsung der Neutronen in zwei Stufen: zuerst durch Wasserstoff und dann durch einen Eisblock aus Deuterium bei minus 270 Grad Celsius. „Jetzt sind die Neutronen so langsam, dass wir praktisch hinterherlaufen könnten“, beschreibt Heil das Ergebnis. Mit einem Tempo von 5 Meter pro Sekunde gleiten die UCN zum Experimentierplatz am anderen Ende des Rohrs. Damit auf dem Weg dorthin keine Neutronen verloren gehen, ist das Edelstahlrohr mit Nickel beschichtet.

Die entscheidende Maßzahl für die Wissenschaftler ist jetzt die UCN-Dichte am Experimentierort – was die Attraktivität einer Anlage zur Durchführung von Hochpräzisionsexperimenten ausmacht. „Im ersten Test haben wir 10 UCN pro Kubikzentimeter in typischen Speichervolumina von 10 Litern erhalten. Mit Wasserstoff als Vormoderator und geringen Veränderungen können 50 UCN pro Kubikzentimeter erhalten werden “, erklären Dr. Thorsten Lauer und Dr. Yuri Sobolev, die die Anlage betreuen. Das reicht voll und ganz, um z. B. Langzeitexperimente zur Messung der Lebensdauer des Neutrons durchzuführen, und sichert den Mainzer Forschern den Spitzenplatz beim Wettlauf um die höchsten Speicherdichten, an dem sich u.a. Einrichtungen in Los Alamos, Grenoble, München und dem schweizerischen Villigen beteiligen.

Die Lebensdauer des Neutrons beträgt nach derzeitigem Stand der Wissenschaft rund 885 Sekunden, ist jedoch wegen der schwierigen Messung nicht mit höchster Genauigkeit bekannt. Gemessen wird nach dem Prinzip „Counting the Survivors“: Von der Anfangsmenge wird die Endmenge abgezogen, die nach dem Zerfall der Neutronen nach einer bestimmten Zeit noch übrig ist. „Die Lebensdauermessung leidet bisher darunter, dass es zu wenige ultrakalte Neutronen gibt“, erläutert Juniorprof. Dr. Christian Plonka-Spehr vom Institut für Kernchemie.

Die UCN-Forschungen in Mainz sind in das Exzellenzcluster „Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA) eingebunden, das sich derzeit in der Bundesexzellenzinitiative bewirbt. Der Aufbau der neuen UCN-Quelle erfolgte in Eigenbau durch die Werkstätten der Physik und Kernchemie auf dem Campus der Universität. Über die letzten drei Jahre waren mit dem UCN-Projekt 17 Diplomanden, zwei Doktoranden und zwei Postdocs befasst – ein Gebiet, das auch in Zukunft viele neue wissenschaftliche Erkenntnisse bringen wird.

Veröffentlichungen:
A. Frei, Yu. Sobolev, I.Altarev, K. Eberhardt, A. Gschrey, E. Gutsmiedl, R. Hackl, G. Hampel, F.J. Hartmann, W. Heil, J.V. Kratz, Th. Lauer, A. Lizon Aguilar, A.R. Müller, S. Paul, Yu. Pokotilovski, W. Schmid, L. Tassini, D. Tortorella, N. Trautmann, U. Trinks, N. Wiehl:

First production of ultracold neutrons with a solid deuterium source at the pulsed reactor TRIGA Mainz. Eur. Phys. J. A 34 (2007) 119.

I. Altarev, F. Atchison, M. Daum, A. Frei, E. Gutsmiedl, G. Hampel, F.J. Hartmann, W. Heil, A. Knecht, J.V. Kratz, T. Lauer, M. Meier, S. Paul, Y. Sobolev, N. Wiehl:

Neutron velocity distribution from a superthermal solid 2H2 ultracold neutron source. Eur. Phys. J. A 37 (2008) 9.

Weitere Informationen:
Univ.-Prof. Dr. Werner Heil
Quanten-, Atom- und Neutronenphysik
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-22885
Fax +49 6131 39-23428
E-Mail: wheil@uni-mainz.de
http://www.quantum.physik.uni-mainz.de/members/heil/he3undneutronen.html
Weitere Informationen:
http://www.kernchemie.uni-mainz.de
http://ucn.kernchemie.uni-mainz.de/
http://www.phmi.uni-mainz.de/1392.php (Pressemitteilung „Erzeugung ultrakalter Neutronen gelungen“)
http://www.uni-mainz.de/presse/26914.php (Pressemitteilung „Eiskalt abgebremst: Mainzer Physiker erzeugen ultrakalte Neutronen am TRIGA-Reaktor)

http://www.uni-mainz.de/presse/20829.php (Bildarchiv)

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften