Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tiefgekühlte Neutronen für die Wissenschaft: UCN sollen Rätsel der Astrophysik lösen

04.05.2011
Mainz verfügt über die leistungsstärkste Quelle für ultrakalte Neutronen – Weg frei für Flaggschiff-Experiment zur Lebensdauerbestimmung des Neutrons

Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) haben die derzeit stärkste Quelle für ultrakalte Neutronen aufgebaut. Ultrakalte Neutronen – die Abkürzung UCN leitet sich vom englischen Begriff „ultra-cold neutron“ ab – wurden in Mainz zum ersten Mal vor fünf Jahren erzeugt.

Sie sind wesentlich langsamer als thermische Neutronen und zeichnen sich dadurch aus, dass sie in geeigneten Gefäßen gespeichert werden können. Diese Eigenschaft macht sie zu einem wichtigen Werkzeug für Experimente, mit denen Fragen zur Dominanz von Materie gegenüber Antimaterie im Universum oder zur Entstehung der leichtesten Elemente direkt nach dem Urknall erforscht werden können.

„Wir haben eine neue UCN-Quelle in Betrieb genommen und das Verfahren insgesamt so verbessert, dass wir nun wesentlich mehr ultrakalte Neutronen erzeugen und speichern können als bisher und als irgendjemand sonst“, erklärt Univ.-Prof. Dr. Werner Heil vom Institut für Physik. Mit einer Dichte von bislang 10 UCN pro Kubikzentimeter setzen sich die Mainzer Wissenschaftler, beteiligt sind sowohl Chemiker als auch Physiker, an die Weltspitze auf diesem Forschungsgebiet.

Den Mainzern war 2006 in einer Kooperation mit der TU München zum ersten Mal die Herstellung von ultrakalten Neutronen an einem gepulsten TRIGA-Reaktor gelungen. Bei dem Verfahren werden zunächst im Forschungsreaktor TRIGA Mainz durch Kernspaltung Neutronen erzeugt. Diese Spaltneutronen haben Geschwindigkeiten bis 30.000 Kilometer pro Sekunde – das ist ein Zehntel der Lichtgeschwindigkeit. Noch im Reaktor werden sie durch Wechselwirkung mit leichten Atomkernen auf eine „thermische“ Geschwindigkeit von 2.200 Meter pro Sekunde abgebremst. Dann kommt die Entwicklung der Mainzer Wissenschaftler zum Tragen: Ein Rohr von insgesamt drei Meter Länge wird in den Reaktor an die Stelle des höchsten thermischen Neutronenflusses geschoben. In diesem Rohr werden die thermischen Neutronen extrem verlangsamt.

Bei der neuen UCN-Quelle im Strahlrohr D des TRIGA Mainz, die gerade die erste Heißerprobung hinter sich hat, erfolgt die Abbremsung der Neutronen in zwei Stufen: zuerst durch Wasserstoff und dann durch einen Eisblock aus Deuterium bei minus 270 Grad Celsius. „Jetzt sind die Neutronen so langsam, dass wir praktisch hinterherlaufen könnten“, beschreibt Heil das Ergebnis. Mit einem Tempo von 5 Meter pro Sekunde gleiten die UCN zum Experimentierplatz am anderen Ende des Rohrs. Damit auf dem Weg dorthin keine Neutronen verloren gehen, ist das Edelstahlrohr mit Nickel beschichtet.

Die entscheidende Maßzahl für die Wissenschaftler ist jetzt die UCN-Dichte am Experimentierort – was die Attraktivität einer Anlage zur Durchführung von Hochpräzisionsexperimenten ausmacht. „Im ersten Test haben wir 10 UCN pro Kubikzentimeter in typischen Speichervolumina von 10 Litern erhalten. Mit Wasserstoff als Vormoderator und geringen Veränderungen können 50 UCN pro Kubikzentimeter erhalten werden “, erklären Dr. Thorsten Lauer und Dr. Yuri Sobolev, die die Anlage betreuen. Das reicht voll und ganz, um z. B. Langzeitexperimente zur Messung der Lebensdauer des Neutrons durchzuführen, und sichert den Mainzer Forschern den Spitzenplatz beim Wettlauf um die höchsten Speicherdichten, an dem sich u.a. Einrichtungen in Los Alamos, Grenoble, München und dem schweizerischen Villigen beteiligen.

Die Lebensdauer des Neutrons beträgt nach derzeitigem Stand der Wissenschaft rund 885 Sekunden, ist jedoch wegen der schwierigen Messung nicht mit höchster Genauigkeit bekannt. Gemessen wird nach dem Prinzip „Counting the Survivors“: Von der Anfangsmenge wird die Endmenge abgezogen, die nach dem Zerfall der Neutronen nach einer bestimmten Zeit noch übrig ist. „Die Lebensdauermessung leidet bisher darunter, dass es zu wenige ultrakalte Neutronen gibt“, erläutert Juniorprof. Dr. Christian Plonka-Spehr vom Institut für Kernchemie.

Die UCN-Forschungen in Mainz sind in das Exzellenzcluster „Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA) eingebunden, das sich derzeit in der Bundesexzellenzinitiative bewirbt. Der Aufbau der neuen UCN-Quelle erfolgte in Eigenbau durch die Werkstätten der Physik und Kernchemie auf dem Campus der Universität. Über die letzten drei Jahre waren mit dem UCN-Projekt 17 Diplomanden, zwei Doktoranden und zwei Postdocs befasst – ein Gebiet, das auch in Zukunft viele neue wissenschaftliche Erkenntnisse bringen wird.

Veröffentlichungen:
A. Frei, Yu. Sobolev, I.Altarev, K. Eberhardt, A. Gschrey, E. Gutsmiedl, R. Hackl, G. Hampel, F.J. Hartmann, W. Heil, J.V. Kratz, Th. Lauer, A. Lizon Aguilar, A.R. Müller, S. Paul, Yu. Pokotilovski, W. Schmid, L. Tassini, D. Tortorella, N. Trautmann, U. Trinks, N. Wiehl:

First production of ultracold neutrons with a solid deuterium source at the pulsed reactor TRIGA Mainz. Eur. Phys. J. A 34 (2007) 119.

I. Altarev, F. Atchison, M. Daum, A. Frei, E. Gutsmiedl, G. Hampel, F.J. Hartmann, W. Heil, A. Knecht, J.V. Kratz, T. Lauer, M. Meier, S. Paul, Y. Sobolev, N. Wiehl:

Neutron velocity distribution from a superthermal solid 2H2 ultracold neutron source. Eur. Phys. J. A 37 (2008) 9.

Weitere Informationen:
Univ.-Prof. Dr. Werner Heil
Quanten-, Atom- und Neutronenphysik
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-22885
Fax +49 6131 39-23428
E-Mail: wheil@uni-mainz.de
http://www.quantum.physik.uni-mainz.de/members/heil/he3undneutronen.html
Weitere Informationen:
http://www.kernchemie.uni-mainz.de
http://ucn.kernchemie.uni-mainz.de/
http://www.phmi.uni-mainz.de/1392.php (Pressemitteilung „Erzeugung ultrakalter Neutronen gelungen“)
http://www.uni-mainz.de/presse/26914.php (Pressemitteilung „Eiskalt abgebremst: Mainzer Physiker erzeugen ultrakalte Neutronen am TRIGA-Reaktor)

http://www.uni-mainz.de/presse/20829.php (Bildarchiv)

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Durchbruch mit einer Kette aus Goldatomen
17.02.2017 | Universität Konstanz

nachricht Zukunftsmusik: Neues Funktionsprinzip zur Erzeugung der „Dritten Harmonischen“
17.02.2017 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Im Focus: Weltweit genaueste und stabilste transportable optische Uhr

Optische Strontiumuhr der PTB in einem PKW-Anhänger – für geodätische Untersuchungen, weltweite Uhrenvergleiche und schließlich auch eine neue SI-Sekunde

Optische Uhren sind noch genauer als die Cäsium-Atomuhren, die gegenwärtig die Zeit „machen“. Außerdem benötigen sie nur ein Hundertstel der Messdauer, um eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

Ökologischer Landbau: Experten diskutieren Beitrag zum Grundwasserschutz

17.02.2017 | Veranstaltungen

Von DigiCash bis Bitcoin

16.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks

17.02.2017 | Biowissenschaften Chemie

LODENFREY setzt auf das Workforce Mangement von GFOS

17.02.2017 | Unternehmensmeldung

50 Jahre JULABO : Erfahrung – Können & Weiterentwicklung!

17.02.2017 | Unternehmensmeldung