Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Thermometer für die Nanowelt, bestehend aus 80 Atomen

31.10.2011
Wir kennen es aus alltäglichen Anwendungen wie z.B. dem Tauchsieder: Fließen Elektronen durch einen Draht, so erwärmt sich dieser.

Wie die Zeitschrift Physical Review Letters berichtet, ist es Forschern vom Institut für Angewandte Physik der Universität Hamburg nun gelungen, diese Entstehung von Wärme auf atomarer Skala zu untersuchen.


Prinzip des Aufheizens eines Nanomagneten durch einen Tunnelstrom: Elektronen (blau) tunneln von der Nadelspitze eines Rastertunnelmikroskops (gelb) in den Nanomagneten. Aus der Frequenz des magnetischen Schaltens wird dann die Temperatur bestimmt – hier symbolisiert durch ein Thermometer. Bei niedrigem Strom besitzt der Nanomagnet die Temperatur seiner Umgebung (links). Wird der Strom erhöht, so heizen die Elektronen den Nanomagneten auf (rechts). S. Krause, Universität Hamburg

Hierfür beobachteten die Wissenschaftler um Prof. Roland Wiesendanger das thermische Hin- und Herschalten eines aus lediglich 80 Eisenatomen bestehenden Nanomagneten und verwendeten ihn so als Thermometer. Dabei nutzten sie das Prinzip des Tunnelns: Positioniert man eine magnetische Nadelspitze sehr nah über dem Magneten und legt eine elektrische Spannung an, so fließt ein sogenannter Tunnelstrom.

Je näher sich dabei die Nadel über dem Magneten befindet, desto größer ist der fließende Strom. Es zeigte sich, dass analog zum Tauchsieder der Tunnelstrom zu einer Erwärmung des Magneten führt. Mit einem sogenannten spinpolarisierten Rastertunnelmikroskop im Ultrahochvakuum untersuchten die Forscher die Schaltfrequenz des Nanomagneten bei verschiedenen Stromstärken.

Aus der jeweils gemessenen Frequenz gelang es, direkt die entsprechende Temperatur des Magneten zu bestimmt. Dabei zeigte sich, dass bereits ein Strom von einem Mikroampere ausreicht, um den Magneten um 1° C zu erwärmen, während seine unmittelbare Umgebung vom Strom unbeeinflusst blieb. Zusätzlich fanden die Forscher heraus, dass der Tunnelstrom den Nanomagneten in eine Vorzugsrichtung zwingt:

Er schaltet nicht mehr gleichmäßig zwischen zwei Orientierungen hin und her, sondern bevorzugt eine Orientierung, die der Magnetisierungsrichtung der Nadel entspricht. Die Experimente ergaben, dass dieses Spinstromschalten mit einem Rastertunnelmikroskop um Größenordnungen effektiver ist als mit Techniken, bei denen der zu schaltende Magnet in ein Schichtsystem eingebettet ist.

Die Experimente erlauben den Forschern einen detaillierten Einblick in die elektrischen und magnetischen Wechselwirkungen zwischen Elektronen und Materie auf atomarer Skala. Mögliche zukünftige Anwendungen dieser Technik sind z.B. kleinste thermisch schaltende Nanomagnete, die als Sensoren oder Manipulatoren in industriellen Fertigungsprozessen eingesetzt werden, um hoch präzise lokale Temperaturen zu messen.

Heiko Fuchs | idw
Weitere Informationen:
http://www.sfb668.de/
http://www.nanoscience.de/lexi
http://www.nanoscience.de/furore

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit