Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Teufelstreppe erklärt Wachstumsprozesse in Netzwerken

31.08.2012
Soziale und andere Netzwerke können langsam und dennoch sprunghaft wachsen. Das scheinbare Paradoxon lässt sich anhand einer Teufelstreppe erklären.

Dass sich ein Netzwerk - sei es ein Freundeskreis, ein Computernetzwerk oder die Nervenzellen des Gehirns - durch das Hinzufügen von einigen wenigen Verbindungen dramatisch vergrößern kann, war wohlbekannt.


Der Kreis infizierter Personen (grün dargestellt) innerhalb einer Gesamtbevölkerung (großer roter Kreis) kann sprunghaft und damit unkontrollierbar ansteigen. Manchmal folgt der Wachstumsprozess einer Teufelstreppe. Grafik: MPIDS

Unklar blieb der Zusammenhang zwischen langsamen und abrupten Wachstumsschüben. Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) und der Universität Göttingen erklären diesen Zusammenhang mit der Entdeckung einer Teufelstreppe, die sowohl sprunghaftes, als auch allmähliches Wachstum vereinigt. Die Ergebnisse dieser theoretischen Studie wurden jetzt in der Fachzeitschrift Physical Review X veröffentlicht.

Oft geht es schlagartig vor sich: Ein Online-Filmchen einer Klavier spielenden Katze kann innerhalb von Stunden Kultstatus erreichten; eine Grippeepidemie kann urplötzlich auf weite Bevölkerungsteile übergreifen; oder der Aufbau eines Bekanntenkreises nach dem Umzug in eine neue Stadt kann sich auf einmal sprunghaft beschleunigen. In all diesen Beispielen benachrichtigt, infiziert oder trifft eine Person nach und nach andere, und auf eine ruhige Anfangszeit folgt unvermittelt eine Phase, während der sich der Kreis der Beteiligten plötzlich sehr schnell vergrößert. Die Göttinger Forscher haben nun untersucht, welche Arten solcher plötzlichen Übergänge möglich sind.

Wissenschaftler untersuchen Prozesse wie das Verbreiten von Ideen, Viren oder Signalen im Rahmen der so genannten Netzwerktheorie. Die Personen, Computer und anderen Einheiten, die miteinander in Kontakt treten können, werden als Punkte (so genannte Knoten) dargestellt. Wenn ein Kontakt zwischen zwei Knoten zustande kommt, werden diese durch eine Linie verbunden. Dadurch entstehen komplexe Netzwerkstrukturen, die sich meistens unabhängig von der Bedeutung der Knoten untersuchen lassen.

Solche Modelle erlauben es unter anderem, Wachstumsprozesse zu erforschen. Im einfachsten Fall geht man von einer großen Anzahl isolierter Knoten aus. Wenn nun in dieser losen Ansammlung zufällig Knoten herausgegriffen und zu Paaren verbunden werden, bilden sich allmählich Gruppen von Knoten, die mehrere Knoten umfassen. Anfänglich besteht das System aus vielen separaten Gruppen, die etwa gleich groß sind. Das Verhalten verändert sich jedoch dramatisch, sobald eine kritische Anzahl von Verbindungen eingebracht wurde. Dann wächst plötzlich eine dominante Gruppe heran, die sich schnell vergrößert und schließlich das ganze System beherrscht.
Ein solcher Wechsel von langsamem zu schnellem Wachstum wird als „Phasenübergang“ bezeichnet. „Das Verhalten von Netzwerken mit langsamen Übergängen lässt sich kontrollieren, zumindest im Prinzip. In Netzwerken mit plötzlichen Übergängen ist dies aber praktisch unmöglich, da dann zu wenig Zeit bleibt, in das System einzugreifen, um etwa das Ausbreiten einer Epidemie einzudämmen. Die Dynamik lässt sich dann weder voraussagen, noch kontrollieren,“ erklärt Nagler. Deswegen ist die Frage, ob der Übergang abrupt - also sprunghaft - oder allmählich und kontinuierlich ist, zentral bei der Erforschung des Wachstums von Netzwerken.

Das Göttinger Forscherteam untersuchte ein Modell, in dem das Hinzufügen neuer Verbindungen nicht mehr rein zufällig geschieht, sondern in dem sich bevorzugt gleichartige Gruppen gemäß bestimmter Regeln vernetzen. Dies ist etwa in alltäglichen Netzwerken üblich. Freundeskreise zum Beispiel wachsen bekanntlich alles andere als zufällig, sondern bevorzugen Kontakte mit Gleichgesinnten. „Anders als bisher angenommen kann in solchen Netzwerken die Expansion auch abrupt sein“, sagt nun Jan Nagler, der an der Universität Göttingen und am Max-Planck-Institut für Dynamik und Selbstorganisation forscht.

Nagler erklärt weiter: „Kontinuierliche Phasenübergänge können sich in Wirklichkeit aus winzigen Sprüngen zusammensetzen.“ Dieses scheinbare Paradoxon erklären die Wissenschaftler mit der Entdeckung eines Phasenübergangs in Form einer Teufelstreppe: Die Stufen dieser Treppe werden immer kleiner, bis sie schließlich zu einer geraden Linie werden (siehe Abbildung 1). Damit weisen die Forscher nach, dass die Expansion eines Netzwerks - egal ob dies nun soziale Netzwerke, Computernetzwerke oder Netzwerke infektiöser Kontakte sind - sprunghaft und damit praktisch unkontrollierbar sein kann.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.ds.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten