Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Teufelstreppe erklärt Wachstumsprozesse in Netzwerken

31.08.2012
Soziale und andere Netzwerke können langsam und dennoch sprunghaft wachsen. Das scheinbare Paradoxon lässt sich anhand einer Teufelstreppe erklären.

Dass sich ein Netzwerk - sei es ein Freundeskreis, ein Computernetzwerk oder die Nervenzellen des Gehirns - durch das Hinzufügen von einigen wenigen Verbindungen dramatisch vergrößern kann, war wohlbekannt.


Der Kreis infizierter Personen (grün dargestellt) innerhalb einer Gesamtbevölkerung (großer roter Kreis) kann sprunghaft und damit unkontrollierbar ansteigen. Manchmal folgt der Wachstumsprozess einer Teufelstreppe. Grafik: MPIDS

Unklar blieb der Zusammenhang zwischen langsamen und abrupten Wachstumsschüben. Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) und der Universität Göttingen erklären diesen Zusammenhang mit der Entdeckung einer Teufelstreppe, die sowohl sprunghaftes, als auch allmähliches Wachstum vereinigt. Die Ergebnisse dieser theoretischen Studie wurden jetzt in der Fachzeitschrift Physical Review X veröffentlicht.

Oft geht es schlagartig vor sich: Ein Online-Filmchen einer Klavier spielenden Katze kann innerhalb von Stunden Kultstatus erreichten; eine Grippeepidemie kann urplötzlich auf weite Bevölkerungsteile übergreifen; oder der Aufbau eines Bekanntenkreises nach dem Umzug in eine neue Stadt kann sich auf einmal sprunghaft beschleunigen. In all diesen Beispielen benachrichtigt, infiziert oder trifft eine Person nach und nach andere, und auf eine ruhige Anfangszeit folgt unvermittelt eine Phase, während der sich der Kreis der Beteiligten plötzlich sehr schnell vergrößert. Die Göttinger Forscher haben nun untersucht, welche Arten solcher plötzlichen Übergänge möglich sind.

Wissenschaftler untersuchen Prozesse wie das Verbreiten von Ideen, Viren oder Signalen im Rahmen der so genannten Netzwerktheorie. Die Personen, Computer und anderen Einheiten, die miteinander in Kontakt treten können, werden als Punkte (so genannte Knoten) dargestellt. Wenn ein Kontakt zwischen zwei Knoten zustande kommt, werden diese durch eine Linie verbunden. Dadurch entstehen komplexe Netzwerkstrukturen, die sich meistens unabhängig von der Bedeutung der Knoten untersuchen lassen.

Solche Modelle erlauben es unter anderem, Wachstumsprozesse zu erforschen. Im einfachsten Fall geht man von einer großen Anzahl isolierter Knoten aus. Wenn nun in dieser losen Ansammlung zufällig Knoten herausgegriffen und zu Paaren verbunden werden, bilden sich allmählich Gruppen von Knoten, die mehrere Knoten umfassen. Anfänglich besteht das System aus vielen separaten Gruppen, die etwa gleich groß sind. Das Verhalten verändert sich jedoch dramatisch, sobald eine kritische Anzahl von Verbindungen eingebracht wurde. Dann wächst plötzlich eine dominante Gruppe heran, die sich schnell vergrößert und schließlich das ganze System beherrscht.
Ein solcher Wechsel von langsamem zu schnellem Wachstum wird als „Phasenübergang“ bezeichnet. „Das Verhalten von Netzwerken mit langsamen Übergängen lässt sich kontrollieren, zumindest im Prinzip. In Netzwerken mit plötzlichen Übergängen ist dies aber praktisch unmöglich, da dann zu wenig Zeit bleibt, in das System einzugreifen, um etwa das Ausbreiten einer Epidemie einzudämmen. Die Dynamik lässt sich dann weder voraussagen, noch kontrollieren,“ erklärt Nagler. Deswegen ist die Frage, ob der Übergang abrupt - also sprunghaft - oder allmählich und kontinuierlich ist, zentral bei der Erforschung des Wachstums von Netzwerken.

Das Göttinger Forscherteam untersuchte ein Modell, in dem das Hinzufügen neuer Verbindungen nicht mehr rein zufällig geschieht, sondern in dem sich bevorzugt gleichartige Gruppen gemäß bestimmter Regeln vernetzen. Dies ist etwa in alltäglichen Netzwerken üblich. Freundeskreise zum Beispiel wachsen bekanntlich alles andere als zufällig, sondern bevorzugen Kontakte mit Gleichgesinnten. „Anders als bisher angenommen kann in solchen Netzwerken die Expansion auch abrupt sein“, sagt nun Jan Nagler, der an der Universität Göttingen und am Max-Planck-Institut für Dynamik und Selbstorganisation forscht.

Nagler erklärt weiter: „Kontinuierliche Phasenübergänge können sich in Wirklichkeit aus winzigen Sprüngen zusammensetzen.“ Dieses scheinbare Paradoxon erklären die Wissenschaftler mit der Entdeckung eines Phasenübergangs in Form einer Teufelstreppe: Die Stufen dieser Treppe werden immer kleiner, bis sie schließlich zu einer geraden Linie werden (siehe Abbildung 1). Damit weisen die Forscher nach, dass die Expansion eines Netzwerks - egal ob dies nun soziale Netzwerke, Computernetzwerke oder Netzwerke infektiöser Kontakte sind - sprunghaft und damit praktisch unkontrollierbar sein kann.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.ds.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften