Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Teufelstreppe erklärt Wachstumsprozesse in Netzwerken

31.08.2012
Soziale und andere Netzwerke können langsam und dennoch sprunghaft wachsen. Das scheinbare Paradoxon lässt sich anhand einer Teufelstreppe erklären.

Dass sich ein Netzwerk - sei es ein Freundeskreis, ein Computernetzwerk oder die Nervenzellen des Gehirns - durch das Hinzufügen von einigen wenigen Verbindungen dramatisch vergrößern kann, war wohlbekannt.


Der Kreis infizierter Personen (grün dargestellt) innerhalb einer Gesamtbevölkerung (großer roter Kreis) kann sprunghaft und damit unkontrollierbar ansteigen. Manchmal folgt der Wachstumsprozess einer Teufelstreppe. Grafik: MPIDS

Unklar blieb der Zusammenhang zwischen langsamen und abrupten Wachstumsschüben. Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) und der Universität Göttingen erklären diesen Zusammenhang mit der Entdeckung einer Teufelstreppe, die sowohl sprunghaftes, als auch allmähliches Wachstum vereinigt. Die Ergebnisse dieser theoretischen Studie wurden jetzt in der Fachzeitschrift Physical Review X veröffentlicht.

Oft geht es schlagartig vor sich: Ein Online-Filmchen einer Klavier spielenden Katze kann innerhalb von Stunden Kultstatus erreichten; eine Grippeepidemie kann urplötzlich auf weite Bevölkerungsteile übergreifen; oder der Aufbau eines Bekanntenkreises nach dem Umzug in eine neue Stadt kann sich auf einmal sprunghaft beschleunigen. In all diesen Beispielen benachrichtigt, infiziert oder trifft eine Person nach und nach andere, und auf eine ruhige Anfangszeit folgt unvermittelt eine Phase, während der sich der Kreis der Beteiligten plötzlich sehr schnell vergrößert. Die Göttinger Forscher haben nun untersucht, welche Arten solcher plötzlichen Übergänge möglich sind.

Wissenschaftler untersuchen Prozesse wie das Verbreiten von Ideen, Viren oder Signalen im Rahmen der so genannten Netzwerktheorie. Die Personen, Computer und anderen Einheiten, die miteinander in Kontakt treten können, werden als Punkte (so genannte Knoten) dargestellt. Wenn ein Kontakt zwischen zwei Knoten zustande kommt, werden diese durch eine Linie verbunden. Dadurch entstehen komplexe Netzwerkstrukturen, die sich meistens unabhängig von der Bedeutung der Knoten untersuchen lassen.

Solche Modelle erlauben es unter anderem, Wachstumsprozesse zu erforschen. Im einfachsten Fall geht man von einer großen Anzahl isolierter Knoten aus. Wenn nun in dieser losen Ansammlung zufällig Knoten herausgegriffen und zu Paaren verbunden werden, bilden sich allmählich Gruppen von Knoten, die mehrere Knoten umfassen. Anfänglich besteht das System aus vielen separaten Gruppen, die etwa gleich groß sind. Das Verhalten verändert sich jedoch dramatisch, sobald eine kritische Anzahl von Verbindungen eingebracht wurde. Dann wächst plötzlich eine dominante Gruppe heran, die sich schnell vergrößert und schließlich das ganze System beherrscht.
Ein solcher Wechsel von langsamem zu schnellem Wachstum wird als „Phasenübergang“ bezeichnet. „Das Verhalten von Netzwerken mit langsamen Übergängen lässt sich kontrollieren, zumindest im Prinzip. In Netzwerken mit plötzlichen Übergängen ist dies aber praktisch unmöglich, da dann zu wenig Zeit bleibt, in das System einzugreifen, um etwa das Ausbreiten einer Epidemie einzudämmen. Die Dynamik lässt sich dann weder voraussagen, noch kontrollieren,“ erklärt Nagler. Deswegen ist die Frage, ob der Übergang abrupt - also sprunghaft - oder allmählich und kontinuierlich ist, zentral bei der Erforschung des Wachstums von Netzwerken.

Das Göttinger Forscherteam untersuchte ein Modell, in dem das Hinzufügen neuer Verbindungen nicht mehr rein zufällig geschieht, sondern in dem sich bevorzugt gleichartige Gruppen gemäß bestimmter Regeln vernetzen. Dies ist etwa in alltäglichen Netzwerken üblich. Freundeskreise zum Beispiel wachsen bekanntlich alles andere als zufällig, sondern bevorzugen Kontakte mit Gleichgesinnten. „Anders als bisher angenommen kann in solchen Netzwerken die Expansion auch abrupt sein“, sagt nun Jan Nagler, der an der Universität Göttingen und am Max-Planck-Institut für Dynamik und Selbstorganisation forscht.

Nagler erklärt weiter: „Kontinuierliche Phasenübergänge können sich in Wirklichkeit aus winzigen Sprüngen zusammensetzen.“ Dieses scheinbare Paradoxon erklären die Wissenschaftler mit der Entdeckung eines Phasenübergangs in Form einer Teufelstreppe: Die Stufen dieser Treppe werden immer kleiner, bis sie schließlich zu einer geraden Linie werden (siehe Abbildung 1). Damit weisen die Forscher nach, dass die Expansion eines Netzwerks - egal ob dies nun soziale Netzwerke, Computernetzwerke oder Netzwerke infektiöser Kontakte sind - sprunghaft und damit praktisch unkontrollierbar sein kann.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.ds.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics