Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Terahertzblitze ermöglichen exakte Röntgenmessungen

02.02.2011
Viele physikalische und chemische Vorgänge laufen in extrem kurzer Zeit und auf extrem kleinen Längenskalen ab, in der Regel in billiardstel Sekunden und milliardstel Metern. Um sie zu untersuchen, nutzen Forscher intensive ultrakurze Röntgenblitze.

Forscher erzeugen solche intensiven, ultrakurzen Röntgenblitze in großen Forschungsanlagen, sogenannten Freie-Elektronen-Lasern. Eine in Hamburg und Berlin entwickelte neue Methode ermöglicht es nun die Zeitauflösung dieser Großgeräte voll auszureizen. Die Forschergruppe von DESY, HZB, der European XFEL GmbH und des Helmholtz-Instituts Jena stellt ihre Ergebnisse in der aktuellen online-Ausgabe von „Nature Photonics“ vor.

Röntgenblitze zu erzeugen, die nur wenige Femtosekunden (Milliardster Teil einer millionstel Sekunde) lang sind, ist seit einigen Jahren möglich. Sie können von Freie-Elektronen-Lasern (FEL) wie FLASH am Forschungszentrum DESY in Hamburg, LCLS in Stanford (USA) oder dem im Bau befindlichen Röntgenlaser European XFEL erzeugt werden. Tatsächliche Experimente waren aber bislang nur mit einer Auflösung von typischerweise etwa hundert Femtosekunden möglich – also zwei Größenordnungen schlechter als die erzielten Pulsdauern. Das Problem war, genau zu bestimmen, wann die Röntgenpulse im Experiment ankommen.

Eine Gruppe aus Wissenschaftlern des Helmholtz-Zentrums Berlin für Materialien und Energie (HZB), des DESY, der European XFEL GmbH und des Helmholtz-Instituts Jena hat nun einen Weg gefunden, die Ankunftszeit von Röntgenpulsen mit einer Genauigkeit von weniger als zehn Femtosekunden zu messen. Die Methode basiert auf einer sogenannten Kreuzkorrelation.

Die neue Methode wurde am Freie-Elektronen-Laser FLASH für sogenannte „Pump-Probe“-Verfahren entwickelt. Dabei löst ein erster ultrakurzer Pump-Puls beispielsweise eine photochemische Reaktion aus. Ein zweiter Puls aus Röntgenlicht „fotografiert“, wie sich die Reaktion entwickelt. Forscher können nun genau bestimmen, zu welchem Zeitpunkt das Bild durch den zweiten Puls entsteht. Die Wissenschaftler nutzen bei ihrer neuen Methode hierfür einen Nebeneffekt der Röntgenpulserzeugung: Das in FLASH beschleunigte Elektronenpaket sendet, neben dem Röntgenblitz, gleichzeitig einen intensiven Terahertzblitz aus. Die Wissenschaftler trennen beide Blitze mit Hilfe eines gelochten goldbeschichteten Spiegels voneinander. Da beide Pulse zur glei-chen Zeit und vom gleichen Elektronenpaket erzeugt werden, dient der Terahertzblitz als zeitlicher „Marker“ des Röntgenlichtblitzes, der als Zeitreferenz genutzt wird. So gelang es den Forschern, bis auf sieben Femtosekunden genau zu bestimmen, wann der Röntgenlichtblitz die Probe erreicht.

Die neue Methode kann nun mit sehr geringen Modifikationen an allen bestehenden und geplanten neuen FEL-Quellen angewendet werden. In Kombination mit entsprechenden Experimenten eröffnet sie die Möglichkeit, das Potenzial dieser Großgeräte voll auszuschöpfen. Erstmals können Phänomene nun auf der relevanten Femtosekunden-Zeitskala mit Röntgenpulsen untersucht werden. Darauf haben Wissenschaftler lange gewartet.

Gemeinsame Pressemitteilung des Forschungszentrums DESY, des Helmholtz-Zentrums Berlin und der European XFEL GmbH

Weitere Informationen:
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2010.311.html Nature Photonics-Veröffentlichung
http://www.desy.de DESY-Homepage
http://www.helmholtz-berlin.de HZB-Homepage
http://www.xfel.eu/de European-XFEL-Homepage

Dr. Thomas Zoufal | idw
Weitere Informationen:
http://www.desy.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie