Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Temperatur der Quanten

09.09.2013
Wie entsteht eine klassische Temperatur in der Quantenwelt?

An der TU Wien konnte die Entstehung und Ausbreitung einer Temperatur direkt beobachtet werden. Das Erstaunliche ist: Quanteneigenschaften gehen von alleine verloren, ohne dass Einfluss von außen nötig ist. Die Resultate erscheinen nun in „Nature Physics“.


Atomchip zum Kühlen und Manipulieren der ultrakalten Atomwolken.
TU Wien


Prinzip des Experiments: Zu Beginn befindet sich die Atomwolke in einem perfekt geordneten Quantenzustand (symbolisiert durch graue Atome). Im Laufe der Zeit geht diese Quanten-Ordnung verloren und Unordnung breitet sich mit einer gewissen Geschwindigkeit aus (symbolisiert durch eine Mischung von roten und grauen Atomen). Diese Unordnung entspricht der Entwicklung einer Temperatur. Der Verlust der ursprünglichen Quanteneigenschaften geschieht ohne Einfluss von außen, allein durch die quantenmechanischen Wechselwirkungen der Atome.
TU Wien

Quanten und klassische Physik: Vom Kleinen zum Großen

Der Zusammenhang zwischen der mikroskopischen Welt der Quantenphysik und unserer Alltagswelt, in der viel größere Objekte eine Rolle spielen, gibt uns bis heute Rätsel auf. Experimente mit ultrakalten Atom-Wolken an der TU Wien zeigen nun, wie ein Quanten-Objekt ganz von selbst in einen Zustand übergeht, dem man eine Temperatur zuordnen kann.

Wenn man ein Quanten-System misst, verändert man es und zerstört die Quanten-Eigenschaften. So kann man etwa eine Wolke von Atomen so präparieren, dass jedes Atom sich gleichzeitig an verschiedenen Orten befindet, in perfekter Quanten-Überlagerung. Sobald man den Ort der Atome aber misst, wird diese Überlagerung zerstört. Übrig bleiben Atome, die sich an einem bestimmten Ort befinden – sie verhalten sich dann so, wie man das eben auch von klassischen Objekten gewohnt ist.

In diesem Fall entsteht der Übergang vom Quanten-Verhalten ins gewohnte klassische Verhalten durch einen äußeren Eingriff. Doch was geschieht, wenn man das Quantensystem nicht von außen beeinflusst? Kann es dann trotzdem klassische Eigenschaften annehmen - zum Beispiel eine wohldefinierte Temperatur?

Unordnung in der Quantenwelt

„Wir untersuchen Wolken aus einigen tausend Atomen“, erklärt Tim Langen, Hauptautor der Studie aus der Arbeitsgruppe von Prof. Jörg Schmiedmayer an der TU Wien. „Diese Wolken sind noch klein genug, um sie gut von der Umwelt abschirmen zu können. Sie sind aber groß genug, um an ihnen zu studieren wie Quanteneigenschaften verloren gehen".

Im Experiment werden die Atomwolken aufgeteilt und die beiden Hälften nach einer gewissen Zeit miteinander verglichen. So lässt sich messen, wie eng verschiedene Punkte der Atomwolke noch quantenmechanisch miteinander verbunden sind. Ursprünglich ist diese Verbindung perfekt, alle Atome befinden sich in einem streng geordneten Quantenzustand. Doch weil es sich insgesamt um ein großes Objekt aus vielen Atomen handelt, bleibt diese Ordnung nicht lange erhalten.

Verlust der Quanten-Ordnung ohne Einfluss von außen

Weil die Atome miteinander wechselwirken, beginnt sich mit einer gewissen Geschwindigkeit Unordnung auszubreiten. Dort wo bereits Unordnung herrscht, verlieren die Atome ihre Quanteneigenschaften. Man kann ihnen dann, wie bei einem klassischen Gas, eine Temperatur zuordnen. „Wie schnell sich dabei die Unordnung ausbreitet, hängt von der Anzahl der Atome ab“, sagt Tim Langen. Dabei gibt es zu jedem Zeitpunkt eine klare Grenze zwischen dem Bereich, der bereits durch eine klassische Temperatur beschrieben werden kann, und dem Bereich in dem die Quanteneigenschaften noch unverändert sind.

Nach einer gewissen Zeit hat die Unordnung die gesamte Atomwolke erfasst. Die entscheidende Beobachtung dabei ist, dass dies ohne Kontakt zur Außenwelt allein durch Quanteneffekte passiert. "Bisher konnte ein solches Verhalten nur vermutet werden, unsere Experimente beweisen, dass sich die Natur tatsächlich so verhält", freut sich Jörg Schmiedmayer.

Atomwolken: Eine Welt für sich

Die Atomwolke verhält sich in gewissem Sinn wie ein eigenes Mini-Universum: Sie ist von der Außenwelt abgetrennt, ihr Verhalten wird also bloß durch seine inneren Eigenschaften bestimmt. Ausgehend von einem rein quantenmechanischen Zustand sieht sie nach einer gewissen Zeit „klassisch“ ungeordnet aus, auch wenn sie sich ausschließlich nach den Regeln der Quantenphysik entwickelt. Das Experiment könnte uns also nicht nur helfen, das Verhalten großer Atomwolken zu verstehen, es hilft auch zu erklären, warum uns unsere Welt so klassisch erscheint, obwohl sie doch auf quantenphysikalischen Naturgesetzen beruht.

Rückfragehinweis:

Dipl.-Phys. Tim Langen
Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141874
tim.langen@tuwien.ac.at
Prof. Jörg Schmiedmayer
Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141801
hannes-joerg.schmiedmayer@tuwien.ac.at
schmiedmayer@AtomChip.org
Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at
Quantum Physics & Quantum Technologies ist – neben Computational Science & Engineering, Materials & Matter, Information & Communication Technology sowie Energy & Environment – einer von fünf Forschungsschwerpunkten der Technischen Universität Wien. Erforscht werden mögliche Anwendungen von Quantenphänomenen. Diese reichen von fundamentalen Wechselwirkungen der Elementarteilchen über Strahlungsquellen für ultrakurze Photonenpulse bis hin zur Steuerung der Zustände einzelner Atome und damit zu Bauelementen für den Quantencomputer.
TU Wien - Mitglied der TU Austria
www.tuaustria.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften