Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Teleskop mit zweimillionenfacher Vergrößerung

18.07.2012
Antennen-Netzwerk blickt in das Herz eines Quasars in mehreren Milliarden Lichtjahren Entfernung

Einem internationalen Team unter Federführung von Wissenschaftlern des Bonner Max-Planck-Instituts für Radioastronomie ist es gelungen, die Zentralregion eines Quasars in großer Entfernung mit bisher unerreichter Schärfe abzubilden. Dazu verbanden die Astronomen mehrere Radioteleskope auf verschiedenen Kontinenten. Die Messergebnisse bringen die Astronomen einen entscheidenden Schritt voran: der direkten Abbildung schwarzer Löcher in den Herzen nahegelegener Galaxien.


Kosmisches Kraftwerk: Künstlerische Darstellung des Quasars 3C273. Jetzt ist Astronomen mithilfe der VLB-Interferometrie die bisher schärfte Beobachtung des Kernbereichs dieser aktiven Galaxie gelungen. Im Zentrum des Quasars sitzt ein supermassives schwarzes Loch mit etwa einer Milliarde Sonnenmassen. Das Licht, das uns von 3C273 erreicht, ging vor mehr als fünf Milliarden Jahren auf die Reise. © ESO / M. Kornmesser


Die Positionen der drei an dem 1,3-Millimeter-VLBI-Experiment beteiligten Radioteleskope: Die Basislinie zwischen Chile (APEX) und Hawaii (SMA) beträgt 9447 Kilometer, zwischen Chile und Arizona (SMT) sind es 7174 und zwischen Arizona und Hawaii 4627 Kilometer. © MPIfR/T. Krichbaum

Am 7. Mai 2012 haben die Forscher drei Radioteleskope in Chile, Hawaii und Arizona zum ersten Mal auf der Basis der Beobachtungsmethode Very Long Baseline Interferometry (VLBI) zusammengeschaltet. So gewannen sie das bisher schärfste Bild von einer mehr als fünf Milliarden Lichtjahre entfernten aktiven Galaxie, des hellen Quasars 3C 279 mit einem zentralen schwarzen Loch mit der milliardenfachen Masse der Sonne. Die Messungen zeigen, dass die Radiosignale des Quasars aus einer engbegrenzten Region mit einer Winkelausdehnung von 28 Mikro-Bogensekunden stammen; das entspricht der Größe von nur einem halben Lichtjahr.

Die Beobachtungen bei einer Wellenlänge von 1,3 Millimeter (einer Frequenz von 230 Gigahertz) brachten drei Teleskope zusammen, die vorher noch nie mittels dieser Beobachtungstechnik verbunden waren: das Atacama Pathfinder Experiment (APEX), ein Radioteleskop von 12 Meter Durchmesser in der chilenischen Atacama-Wüste, das Submillimeter-Teleskop (SMT) auf dem Gipfel des Mount Graham in Arizona (USA) und das Submillimeter-Array (SMA) auf dem Mauna Kea in Hawaii (USA).
Die hier vorgestellten Radiomessungen markieren wegen der hohen Winkelauflösung einen Meilenstein bei der Erforschung von super-massereichen schwarzen Löchern und ihrer unmittelbaren Umgebung. In Zukunft wollen die Wissenschaftler eine noch größere Anzahl von Radioteleskopen in dieser Weise miteinander verbinden und so ein Event-Horizon-Telescope zu erschaffen. Damit ließe sich erstmals der Schatten des schwarzen Lochs im Zentrum unserer Milchstraße direkt abbilden – ebenso wie entsprechende Strukturen in benachbarten Galaxien.

Der Schatten entsteht durch Gravitationsrotverschiebung rund um den äußeren Horizont eines schwarzen Lochs. Diese dunkle Zone sollte sich der Theorie nach direkt beobachten lassen. Allerdings liegt die Schattengröße am Himmel im Bereich von Mikrobogensekunden, also Millionstel Bogensekunden – ein Winkel, der sich der Detailauflösung herkömmlicher Teleskope entzieht. (Zum Vergleich: Der scheinbare Durchmesser des Vollmonds beträgt etwa 1800 Bogensekunden am Himmel).

Mit der VLBI-Methode erhält man die schärfsten Abbildungen, wenn die beteiligten Teleskope sich in möglichst großem Abstand voneinander befinden. Für seine Quasar-Beobachtungen hat das Forschungsteam drei Radioteleskope miteinander verbunden, die ein Interferometer mit transkontinentalen Basislängen ergeben. Dabei beträgt der Abstand von Chile nach Hawaii 9447, von Chile nach Arizona 7174 und von Arizona nach Hawaii 4627 Kilometer.

Um die Beobachtungen miteinander zu synchronisieren, läuft an jeder Station eine Atomuhr mit. An jeder der drei Stationen wurden während der Messungen insgesamt vier Terabyte an Daten auf großen Festplatten aufgezeichnet und anschließend am Bonner Max-Planck-Institut für Radioastronomie ausgewertet.
Der helle Materiestrahl (Jet) aus dem Zentralbereich des Quasars 3C 279 ließ sich zwischen allen drei Basislinien nachweisen; dabei entsprach die Winkelauflösung einer 2,1-millionenfachen Teleskopvergrößerung. Das ist so, als wenn man einen Tennisball auf der Oberfläche des Mondes im Detail sehen könnte. Oder eine Zeitung in Los Angeles von Frankfurt aus lesen würde.

Im Fokus europäischer Wissenschaftler steht das APEX-Teleskop. An ihm haben deutsche und schwedische Astronomen in den vergangenen Jahren neue digitale Datenaufzeichnungssysteme installiert, sowie eine hochpräzise Atomuhr und Datenrekorder mit erhöhtem Innendruck; Letztere zeichnen über einen Zeitraum von vielen Stunden die anfallenden Daten mit einer Rate von vier Gigabit pro Sekunde auf. Dies ist ein wichtiger Schritt, um ein Interferometer zu konzipieren, das sich über den gesamten Erdball erstreckt.

APEX ist eng mit dem neuen Teleskop ALMA verbunden. Das Atacama Large Millimeter/Submillimeter Array soll nach seiner Fertigstellung aus 64 Einzelantennen bestehen. So wären im Rahmen des VLBI-Projekts Beobachtungen mit noch zehnfach höherer Empfindlichkeit als bisher möglich.

NR/HOR

Hintergrundinformationen

Very Long Baseline Interferometry (VLBI)

Bei terrestrischen VLBI-Netzwerken setzt der Durchmesser der Erde von knapp 13000 Kilometer eine obere Grenze für den Abstand zwischen den beteiligten Stationen. Die Winkelauflösung wird jedoch durch die Distanz nicht in Kilometern, sondern in Einheiten der Radiowellenlänge festgelegt, sodass beim Übergang zu immer kürzeren Wellenlängen die Winkelauflösung immer besser wird. Das ist aus einer Reihe von Gründen technisch sehr aufwändig.

Eine klare Einschränkung ergibt sich vor allem daraus, dass ab etwa einem Millimeter Wellenlänge der Wasserdampfgehalt in den unteren Schichten der Atmosphäre die ohnehin schon schwachen Radiosignale aus dem Kosmos nochmals deutlich beeinträchtigt. Daher ist es erforderlich, eine neue Generation von Radioteleskopen einzusetzen, die sich in sehr großer Höhe über dem Meeresspiegel befinden. Dort ist der Wasserdampfgehalt in der Atmosphäre niedriger und die Absorption der Radiosignale entsprechend geringer.

Um das APEX-Teleskop für den VLBI-Betrieb einsetzen zu können, wurden neue Datenaufnahmesysteme installiert, mit dem die schwachen Signale im Millimeter-Wellenlängenbereich mit großer Bandbreite aufgezeichnet werden können. Solche Systeme wurden parallel in den USA (am MIT-Haystack-Observatorium) und in Europa (MPIfR, INAF/Noto und HAT-Laboratorium) entwickelt. Eine hochgenaue Atomuhr wurde auf der Basis eines Wasserstoff-Maser-Standards (T4Science) installiert. Die beiden Partnerteleskope (SMT und SMA) waren bereits mit entsprechendem Equipment für VLBI-Messungen bestückt.

Ansprechpartner

Dr. Alan Roy
Max-Planck-Institut für Radioastronomie
Telefon: +49 228 525-191
Email: aroy@­mpifr-bonn.mpg.de
Dr. Thomas Krichbaum
Max-Planck-Institut für Radioastronomie
Telefon: +49 22 8525-295
Email: tkrichbaum@­mpifr-bonn.mpg.de
Prof. Dr. J. Anton Zensus
Max-Planck-Institut für Radioastronomie
Telefon: +49 228 525-378
Fax: +49 228 525-439
Email: azensus@­mpifr-bonn.mpg.de
Dr. Norbert Junkes
Press and Public Relations
Max-Planck-Institut für Radioastronomie
Telefon: +49 228 525-399
Fax: +49 228 525-438
Email: njunkes@­mpifr-bonn.mpg.de

Dr. Alan Roy | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/5899142/galaxienherz

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise