Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Teilchenphysik ohne große Wüste - Neuer Ansatz zur Erweiterung des Standardmodells

14.06.2013
Wissenschaftler des Heidelberger Max-Planck-Instituts für Kernphysik haben eine neue Erweiterung des Standardmodells der Teilchenphysik vorgeschlagen.

Der Ansatz erlaubt die Erzeugung von Neutrinomassen und liefert einen Kandidaten für die Dunkle Materie des Universums. Das Modell ist zudem in einem Energiebereich testbar, der heutigen Beschleunigern zugänglich ist. Damit wird eine ‚große Wüste‘ auf dem Weg zu neuer Physik bei unzugänglich hohen Energien vermieden. [Physical Review Letters, 4. Juni 2013]


Abb. 1: Standardmodell der Teilchenphysik. Die ‚Bausteine‘ der Materie bilden je 6 Quarks (aus denen Protonen und Neutronen bestehen) und Leptonen (u. a. Elektronen und Neutrinos). Dazu kommen 4 Eichbosonen, die Wechselwirkungen der Teilchen vermitteln, und das Higgs-Boson.
Grafik: Fermilab Visual Media Services


Abb. 2: Energieskala des Mikrokosmos von Atomen (eV) bis zur Planck-Energie (10^28 eV). Über den Higgs-Mechanismus (spontane Symmetriebrechung) erhalten die Teilchen ihre Masse. Auf dieser Skala findet sich die Vereinheitlichung von elektromagnetischer Kraft und schwacher Kernkraft. Eine Vereinheitlichung mit der starken Kernkraft (Grand Unified Theory, GUT) wird bei 10^25 eV erwartet. Dazwischen liegt über viele Größenordnung die ‚Wüste‘ der Teilchenphysik.
Grafik: MPIK

Zu den Grundlagen der modernen Physik gehört das so genannte Standardmodell der Elementarteilchen und ihrer Wechselwirkungen (Abb. 1). Hinsichtlich seiner Voraussagen hat es sich als sehr erfolgreich erwiesen, aber es ist unvollständig, da es die Gravitation nicht enthält. Auch kann es die – winzigen – Massen der Neutrinos nicht erklären, liefert keinen Kandidaten für die Dunkle Materie und lässt offen, wie sich die verschiedenen Wechselwirkungen durch eine vereinheitlichte Theorie beschreiben lassen.

Aus der Tatsache unserer Existenz folgt zudem, dass es im frühen Universum eine kleine Asymmetrie zwischen Materie und Antimaterie gegeben haben muss, welche mit dem Standardmodell nicht erklärt werden kann. Deshalb gibt es bereits zahlreiche Vorschläge für Erweiterungen des Standardmodells oder auch ganz neue Theorien.

Um immer kleinere Strukturen aufzulösen, ist die Forschung in immer höhere Energiebereiche vorgedrungen. Als praktisches Maß wird die Einheit Elektronenvolt (eV) verwendet – chemische Vorgänge z. B. bewegen sich auf einer Energieskala von einigen eV. Die Masse des kürzlich entdeckten Higgs-Teilchens entspricht 126 Milliarden eV und der weltweit größte Teilchenbeschleuniger LHC des CERN liefert Energien bis 14 Billionen eV. Als höchste sinnvolle Energieskala gilt die ‚Planck-Energie‘ bei 10^28 eV, also noch einmal 15 Größenordnungen (= Millionen Milliarden) über der LHC-Energie. In einigen Erweiterungen des Standardmodells ist das Proton nicht mehr stabil; dessen Zerfall wurde aber bisher nicht beobachtet. In damit verträglichen Theorien muss der Zerfall unterdrückt werden. Die Energieskala, auf der man ‚neue Physik‘ erwartet, liegt dann bei 10^24 eV – also experimentell in praktisch unüberbrückbarer Ferne. Die Teilchenphysiker sprechen hier von einer ‚großen Wüste‘ (Abb. 2).

Michael Dürr und Pavel Fileviez Pérez aus der Abteilung von Manfred Lindner am Heidelberger MPI für Kernphysik haben nun gemeinsam mit Mark B. Wise vom Caltech eine Erweiterung des Standardmodells vorgeschlagen, welche diese Schwierigkeit vermeidet. Es sagt eine Verletzung der Erhaltung der Anzahl von Baryonen (aus Quarks zusammengesetzteTeilchen wie Protonen und Neutronen) und Leptonen (Elektronen und Neutrinos) voraus, ohne dass sich eine mit der Beobachtung unverträglich kurze Lebensdauer des Protons ergäbe. Mit Erhaltungssätzen sind mathematisch Symmetrien verknüpft. So folgt z. B. aus der Unabhängigkeit der Naturgesetze von Ort und Zeit die Erhaltung von Impuls und Energie. Zugleich sind Strukturbildungen in der Natur mit der Brechung von Symmetrien verknüpft. Ein Beispiel ist die Kristallisation von Wasser zu Eis. In der Flüssigkeit ist keine Richtung im Raum ausgezeichnet, während Eiskristalle eine sechszählige Struktur haben und diese Vorzugsrichtungen die vorher höhere Symmetrie brechen.

Die mathematische Formulierung für die Teilchenphysik (Eichtheorie) ist sehr abstrakt, liefert aber wichtige Vorhersagen. Als Konsequenz des neuen Modells ergeben sich neue Teilchen, die sowohl Baryonen- als auch Leptonenzahl tragen und deshalb ‚Leptoquarks‘ genannt werden. Es erlaubt die Erzeugung von Neutrinomassen und kann möglicherweise die Asymmetrie von Materie und Antimaterie im Universum erklären. „Unser Modell ist zudem testbar, beispielsweise am LHC, da die Symmetriebrechung schon auf der TeV-Skala stattfinden kann und sich eine ‚große Wüste‘ erübrigt“, erläutert Michael Dürr. Das leichteste neue Teilchen ist stabil und damit ein Kandidat für Dunkle Materie. Über die Neutrinomasse ergeben sich indirekt Vorhersagen für den neutrinolosen Doppelbetazerfall. Im Hinblick darauf sehen die theoretischen Physiker sehr gespannt den zukünftigen Ergebnissen der Experimente XENON und GERDA entgegen, an denen ihre Heidelberger Kollegen beteiligt sind.

Originalveröffentlichung:
Gauge theory for baryon and lepton numbers with leptoquarks
Michael Dürr, Pavel Fileviez Pérez and Mark B. Wise
Physical Review Letters 110, 231801 (2013), doi: 10.1103/PhysRevLett.110.231801
http://link.aps.org/doi/10.1103/PhysRevLett.110.231801
http://arxiv.org/abs/arXiv:1304.0576

Kontakt:

Michael Dürr
Tel.: 06221/516-816
E-Mail: Michael.duerr@mpi-hd.mpg.de

Dr. Pavel Fileviez Perez
Tel.: 06221/516-822
E-Mail: fileviez@mpi-hd.mpg.de
Weitere Informationen:
http://www.mpi-hd.mpg.de/lin/index.de.html Abteilung Lindner am MPIK
http://www.theory.caltech.edu/ Caltech Particle Theory Group

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie