Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Teilchenmuster, erzeugt durch Oberflächenladung

04.02.2014
Aus Unordnung entsteht Ordnung: An der TU Wien konnte gezeigt werden, wie erstaunlich einfach wohlstrukturierte Teilchenmuster entstehen können.

Winzige Nanostrukturen zu erzeugen hat sich als extrem schwierig herausgestellt – doch was geschieht, wenn man sich kleine Teilchen ganz von selbst zur gewünschten Struktur zusammenbauen?


Regelmäßige Strukturen, wie in einem Kristall
TU Wien


Unregelmäßigere Strukturen, mit unterschiedlich großen, ineinander verwobenen Ringen.
TU Wien

An der TU Wien wird das Phänomen einer derartigen Selbstorganisation anhand von Partikeln untersucht, deren Oberfläche eine ungleichmäßig verteilte elektrische Ladung trägt. Abhängig von verschiedenen externen Parametern können diese Partikel ungeordnete, gel-artige oder kristallähnliche Strukturen bilden. Für die Nanotechnologie sind solche, von außen induzierte Selbstorganisations-Effekte ganz entscheidend.

Mikro-Partikel mit ganz besonderer Oberfläche

Die Partikel, die Emanuela Bianchi im Team von Prof. Gerhard Kahl (Institut für Theoretische Physik, TU Wien) und in Zusammenarbeit mit Prof. Christos N. Likos (Universität Wien) in ihren Computersimulationen analysiert, sind höchstens einige Mikrometer groß, vergleichbar mit Viren oder kleinen Bakterien. Besonders interessant sind solche Nano-Partikel, wenn sie an ihrer Oberfläche verschiedene Regionen mit unterschiedlichen Wechselwirkungseigenschaften aufweisen.

In einem Forschungsprojekt (das im Rahmen eines Elise Richter Stipendiums des FWF gefördert wird) wurden nun Partikel untersucht, deren elektrische Ladung an der Oberfläche ungleich verteilt ist (siehe Abbildung 1): Der Großteil des Partikels ist negativ geladen, an den Polen oben und unten sind allerdings Bereiche mit positiver Ladung zu finden. „Nachdem die Pol-Bereiche alle gleich geladen sind, stoßen sie einander ab“, sagt Emanuela Bianchi. „Bringt man zwei solche Teilchen in Kontakt, dann richten sie sich so aus, dass der Pol des einen Partikels genau zum Äquator des anderen Partikels zeigt.“ Wenn allerdings viele solche Partikel miteinander wechselwirken, wird die Sache komplizierter.

In Computersimulationen wurde untersucht, wie sich die Teilchen verhalten, wenn man sie zwischen zwei horizontalen Platten einsperrt, sodass sie dazwischen eine quasi zwei-dimensionale Struktur bilden können. Die Simulationsergebnisse zeigen, dass ganz unterschiedliche Konfigurationen möglich sind: Manchmal fügen sich die Teilchen in sauber geordneten Flächenstücken zusammen und ergeben eine dichte, hexagonal gepackte Struktur, die man auch von Kristallen kennt. Manchmal hingegen entstehen ungeordnete, gel-artige Strukturen, die aus aneinanderhängenden Ringen aus fünf oder sechs Teilchen gebildet werden.

„Mit unserem Modell lässt sich untersuchen, wie die entstehenden Strukturen von den externen Parametern abhängen“, sagt Emanuela Bianchi. Ganz entscheidend ist dabei die Größe der positiv geladenen Polarregion der Partikel: Kügelchen, bei denen die Grenze zwischen negativer und positiver Ladung am 45. Breitengrad verläuft, ergeben deutlich besser geordnete planare Strukturen als solche, bei denen diese Grenze näher am Pol, beim 60. Breitengrad gezogen wird. Beeinflussen kann man das Ergebnis der Selbstorganisation auch dadurch, indem man die Bodenplatte, auf der die Teilchen zum Liegen kommen, elektrisch auflädt – ein Eingriff, der sich im Experiment ganz leicht umsetzen lässt.

Nanomaterialien mit maßgeschneiderten Eigenschaften

Wenn man die Selbstorganisation von Mikropartikeln versteht, kann man die Teilchen so synthetisieren, dass sie sich in maßgeschneiderten makroskopische Strukturen selbstorganisieren. Je nach mikroskopischer Anordnung der Teilchen hat die aus ihnen entstehende Fläche eine unterschiedliche Dichte und reagiert somit unterschiedlich auf externe Einflüsse (wie etwa elektromagnetische Felder). Mit selbstorganisierenden Strukturen könnte man also beispielsweise Filter mit einstellbarer Porosität herstellen. „Gerade für biomedizinische Anwendungen gibt es hier viele Anwendungsmöglichkeiten“, sagt Emanuela Bianchi.

Rückfragehinweis:
Dr. Emanuela Bianchi
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13631
emanuela.bianchi@tuwien.ac.at
Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik