Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Teilchenmuster, erzeugt durch Oberflächenladung

04.02.2014
Aus Unordnung entsteht Ordnung: An der TU Wien konnte gezeigt werden, wie erstaunlich einfach wohlstrukturierte Teilchenmuster entstehen können.

Winzige Nanostrukturen zu erzeugen hat sich als extrem schwierig herausgestellt – doch was geschieht, wenn man sich kleine Teilchen ganz von selbst zur gewünschten Struktur zusammenbauen?


Regelmäßige Strukturen, wie in einem Kristall
TU Wien


Unregelmäßigere Strukturen, mit unterschiedlich großen, ineinander verwobenen Ringen.
TU Wien

An der TU Wien wird das Phänomen einer derartigen Selbstorganisation anhand von Partikeln untersucht, deren Oberfläche eine ungleichmäßig verteilte elektrische Ladung trägt. Abhängig von verschiedenen externen Parametern können diese Partikel ungeordnete, gel-artige oder kristallähnliche Strukturen bilden. Für die Nanotechnologie sind solche, von außen induzierte Selbstorganisations-Effekte ganz entscheidend.

Mikro-Partikel mit ganz besonderer Oberfläche

Die Partikel, die Emanuela Bianchi im Team von Prof. Gerhard Kahl (Institut für Theoretische Physik, TU Wien) und in Zusammenarbeit mit Prof. Christos N. Likos (Universität Wien) in ihren Computersimulationen analysiert, sind höchstens einige Mikrometer groß, vergleichbar mit Viren oder kleinen Bakterien. Besonders interessant sind solche Nano-Partikel, wenn sie an ihrer Oberfläche verschiedene Regionen mit unterschiedlichen Wechselwirkungseigenschaften aufweisen.

In einem Forschungsprojekt (das im Rahmen eines Elise Richter Stipendiums des FWF gefördert wird) wurden nun Partikel untersucht, deren elektrische Ladung an der Oberfläche ungleich verteilt ist (siehe Abbildung 1): Der Großteil des Partikels ist negativ geladen, an den Polen oben und unten sind allerdings Bereiche mit positiver Ladung zu finden. „Nachdem die Pol-Bereiche alle gleich geladen sind, stoßen sie einander ab“, sagt Emanuela Bianchi. „Bringt man zwei solche Teilchen in Kontakt, dann richten sie sich so aus, dass der Pol des einen Partikels genau zum Äquator des anderen Partikels zeigt.“ Wenn allerdings viele solche Partikel miteinander wechselwirken, wird die Sache komplizierter.

In Computersimulationen wurde untersucht, wie sich die Teilchen verhalten, wenn man sie zwischen zwei horizontalen Platten einsperrt, sodass sie dazwischen eine quasi zwei-dimensionale Struktur bilden können. Die Simulationsergebnisse zeigen, dass ganz unterschiedliche Konfigurationen möglich sind: Manchmal fügen sich die Teilchen in sauber geordneten Flächenstücken zusammen und ergeben eine dichte, hexagonal gepackte Struktur, die man auch von Kristallen kennt. Manchmal hingegen entstehen ungeordnete, gel-artige Strukturen, die aus aneinanderhängenden Ringen aus fünf oder sechs Teilchen gebildet werden.

„Mit unserem Modell lässt sich untersuchen, wie die entstehenden Strukturen von den externen Parametern abhängen“, sagt Emanuela Bianchi. Ganz entscheidend ist dabei die Größe der positiv geladenen Polarregion der Partikel: Kügelchen, bei denen die Grenze zwischen negativer und positiver Ladung am 45. Breitengrad verläuft, ergeben deutlich besser geordnete planare Strukturen als solche, bei denen diese Grenze näher am Pol, beim 60. Breitengrad gezogen wird. Beeinflussen kann man das Ergebnis der Selbstorganisation auch dadurch, indem man die Bodenplatte, auf der die Teilchen zum Liegen kommen, elektrisch auflädt – ein Eingriff, der sich im Experiment ganz leicht umsetzen lässt.

Nanomaterialien mit maßgeschneiderten Eigenschaften

Wenn man die Selbstorganisation von Mikropartikeln versteht, kann man die Teilchen so synthetisieren, dass sie sich in maßgeschneiderten makroskopische Strukturen selbstorganisieren. Je nach mikroskopischer Anordnung der Teilchen hat die aus ihnen entstehende Fläche eine unterschiedliche Dichte und reagiert somit unterschiedlich auf externe Einflüsse (wie etwa elektromagnetische Felder). Mit selbstorganisierenden Strukturen könnte man also beispielsweise Filter mit einstellbarer Porosität herstellen. „Gerade für biomedizinische Anwendungen gibt es hier viele Anwendungsmöglichkeiten“, sagt Emanuela Bianchi.

Rückfragehinweis:
Dr. Emanuela Bianchi
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13631
emanuela.bianchi@tuwien.ac.at
Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften