Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tanz in die Katastrophe

07.01.2010
Max-Planck-Astrophysiker simulieren, wie weiße Zwergsterne verschmelzen und dabei zur Supernova werden

Supernovae sind spektakuläre Erscheinungen: Plötzlich flammt irgendwo am Firmament ein "neuer Stern" auf und leuchtet so hell wie eine ganze Galaxie aus Milliarden einzelner Sterne. Hinter solchen kosmischen Katastrophen stecken unterschiedliche Mechanismen. Jetzt haben Forscher am Max-Planck-Institut für Astrophysik in Garching mit Computersimulationen bewiesen, dass einige leuchtstarke Supernovae durch die Verschmelzung zweier Weißer Zwerge zünden - kompakte, massereiche Sterne am Ende ihres Lebens. Da diese Supernovae zur Entfernungsbestimmung und zur Untersuchung der Expansion des Universums dienen, spielt die Frage nach den Abläufen bei diesen Explosionen eine zentrale Rolle. (Nature, 7. Januar 2010)


Momentaufnahmen der Verschmelzung von zwei weißen Zwergsternen gleicher Masse von 36 Sekunden vor der Explosion bis 10 Sekunden danach. Die Farben sind ein Maß für die Dichte der Materie, die von blau zu rot ansteigt. Die Diagramme haben unterschiedliche Größenordnungen. Bild: MPI für Astrophysik

Sterne mittlerer Masse wie unsere Sonne werden am Ende ihres Lebens zu weiß strahlenden Zwergsternen, die aus Kohlenstoff und Sauerstoff bestehen. Der stellare Fusionsreaktor im Innern ist wegen Brennstoffmangels nicht mehr in Betrieb. Die Sterne sind nur noch so groß wie die Erde und besitzen eine hohe Dichte. Ein Teelöffel voll Materie würde auf unserem Planeten soviel wiegen wie ein Mittelklassewagen.

In einem Doppelsternsystem können gleich zwei dieser exotischen Weißen Zwerge entstehen. Während sie einander umkreisen, strahlen sie Gravitationswellen ab. Der daraus resultierende Energieverlust führt zu immer engeren Umlaufbahnen - bis sich die beiden Partner immer weiter annähern und schließlich miteinander verschmelzen. Man nimmt schon lange Zeit an, dass daraus Supernova-Explosionen vom Typ Ia resultieren können.

Eine Forschungsgruppe, die sich am Garchinger Max-Planck-Institut für Astrophysik mit Supernovae beschäftigt, hat nun die Verschmelzung von Weißen Zwergen mit bisher unerreichter Detailfülle am Computer nachgestellt. Falls die beiden Zwerge gleich große Massen haben, läuft die Verschmelzung besonders heftig ab: Ein Teil der Materie des einen Sterns prallt auf den anderen und heizt das Kohlenstoff-Sauerstoff-Gemisch dermaßen auf, dass eine thermonukleare Explosion gezündet wird - die Sterne werden gesprengt und explodieren als Supernova.

"Mit diesen detaillierten Simulationen konnten wir Daten vorhersagen, die sehr gut mit tatsächlichen, am Teleskop gewonnenen Beobachtungen von Supernovae des Typs Ia übereinstimmen", erklärt Dr. Friedrich Röpke vom Supernova-Team. Offenbar tragen in der Natur also verschmelzende Weiße Zwerge zu Supernovae des Typs Ia bei, auch wenn solche Prozesse wahrscheinlich nicht alle diese Explosionen erklären können.

"Supernovae gehören zu den hellsten Explosionen, die wir im Kosmos beobachten", sagt Wolfgang Hillebrandt, Direktor am Max-Planck-Institut für Astrophysik und Mitautor des Artikels in der Fachzeitschrift Nature. "Wie sie entstehen, bleibt aber eine ungelöste Frage. Mit unseren Simulationen konnten wir nun das Rätsel um die Vorläufer von Supernovae des Typs Ia teilweise lösen."

Weitere Unterstützung erhält die These, dass Supernovae des Typs Ia aus der Verschmelzung von Weißen Zwergen entstehen, von einer anderen Gruppe am Garchinger Institut. In einem Artikel, der bald in Nature erscheinen wird, zeigen die Forscher, dass der Großteil der beobachteten Supernovae nicht etwa dadurch erklärt werden kann, dass der weiße Zwergstern Materie von einem umlaufenden normalen Stern akkreditiert - wie das bisher angenommen wurde. Die einzige Alternative besteht derzeit in der Verschmelzung von zwei Weißen Zwergen.

Originalveröffentlichung:

Rüdiger Pakmor, Markus Kromer, Friedrich K. Röpke, Stuart A.Sim, J Ashley J. Ruiter, Wolfgang Hillebrandt
Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with M~0.9 M_solar

Nature, 7. Januar 2010

Weitere Informationen erhalten Sie von:

Dr. Hannelore Hämmerle, Pressesprecherin
Max-Planck-Institut für Astrophysik, Garching
Tel.: +49 89 30000-3980
E-Mail: hannelore.haemmerle@mpe.mpg.de
Prof. Dr. Wolfgang Hillebrandt
Max-Planck-Institut für Astrophysik, Garching
Tel.: +49 89 30000-2200
E-Mail: whillebrandt@mpa-garching.mpg.de
Dr. Friedrich K. Röpke
Max-Planck-Institut für Astrophysik, Garching
Tel.: +49 89 30000-2212
E-Mail: froepke@mpa-garching.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten