Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Synchrone Quantensprünge bei Elektronen-Einfang in hochgeladene Ionen

29.09.2011
Rekombination, der Einfang eines Elektrons in ein Ion, ist ein fundamentaler atomarer Prozess mit hoher Relevanz für Plasmaphysik und Astrophysik.
Dabei kann die freigesetzte Energie auf gebundene Elektronen des Ions resonant übertragen werden. Forscher des Heidelberger Max-Planck-Instituts für Kernphysik haben in theoretischen und experimentellen Studien gezeigt, dass dieser Prozess in einigen Fällen effizienter erfolgt, wenn statt zwei, etwa drei oder gar vier Elektronen daran beteiligt sind.

Abb. 1: Schema der di- (a) und trielektronischen (b) Rekombination in kohlenstoffartigen Ionen (sechs Elektronen plus das eingefangene). K und L bezeichnen die beteiligten elektronischen Schalen des Ions. Grafik: MPI für Kernphysik


Abb. 2: Relative Stärke der tri- zur dielektronischen Rekombination in Abhängigkeit der atomaren Ordnungszahl (Kernladung) für kohlenstoffartige Ionen (Ar12+, Fe20+, Kr30+). Unterhalb von Z ≈ 20 überwiegt der trielektronische Prozess. Grafik: MPI für Kernphysik

(Phys. Rev. Lett. 29.09.2011 online)

Hochgeladene Ionen sind hungrig nach Elektronen, da ihnen viele davon fehlen. Sie kommen nur in sehr heißen Umgebungen bis zu einigen Millionen Grad vor, z. B. im Kosmos im Inneren von Sternen oder deren Atmosphären, in Sternexplosionen oder in der Umgebung dessen, was davon übrig bleibt – Neutronensterne oder Schwarze Löcher – wenn diese Materie ansaugen. Sie bevölkern aber auch heiße technische Plasmen, wie sie z. B. in Fusionsexperimenten vorliegen. Sie tragen dort zu Kühlmechanismen bei, die für die Kontrolle des Plasmas wichtig sind. Trifft nämlich ein schnelles Elektron aus dem Plasma auf ein Ion, so kann es von diesem unter Aussendung eines Röntgenphotons eingefangen werden (radiative Rekombination). Dem Plasma gehen also schnelle geladene Teilchen, die magnetisch eingefangen werden können, verloren und es kühlt sich ab, während die neutralen Röntgenquanten das dünne Plasma praktisch ungehindert verlassen können. Für die Steuerung der Plasmatemperatur sind daher Kenntnisse des Rekombinationsverhaltens von hochgeladenen Ionen von großer Wichtigkeit.

Neben dem rein radiativen Einfang besteht auch die Möglichkeit, dass beim Einfang die freigesetzte Energie auf ein gebundenes Elektron übertragen und dieses in einen höheren Zustand angeregt wird. Die ist genau dann möglich wenn die Anregungsenergie dieses Quantensprungs der Summe von Bewegungs- und Bindungsenergie des eingefangenen Elektrons entspricht – man spricht hier von einem resonanten Prozess, der dielektronischen Rekombination, da zwei Elektronen daran teilnehmen (Abb. 1a). Etwa vorhandene weitere gebundene Elektronen spielen die Rolle eines Zuschauers. Beim Rücksprung kann ein Röntgenquant freigesetzt werden – das Ion stabilisiert sich auf diese Weise und behält seine um eine Einheit verringerte Ladung. Zugleich wird das Plasma wie bei der radiativen Rekombination gekühlt.

Nun ist es auch denkbar, dass mehr als zwei Elektron bei dieser Quantenspringerei mitspielen, und dies wurde in neueren Experimenten auch für bis zu vier Elektronen beobachtet: tri- (Abb. 1b) und quadruelektronische Rekombination. Es entspricht durchaus der Erwartung, dass die Prozesse höherer Ordnung, die mehrere Elektronen einbeziehen, unwahrscheinlicher sind. Rechnungen von Zoltán Harman aus der Abteilung von Christoph Keitel am Heidelberger Max-Planck-Institut für Kernphysik ergaben aber, dass die Stärke der mehrelektronischen Rekombination hin zu leichteren Elementen stark zunimmt. Dieser systematische Trend sagt sogar voraus, dass für leichtere kohlenstoffartige Ionen dielektronische Rekombination von der trielektronischen übertroffen wird (Abb. 2).

Diese einigermaßen überraschende Vorhersage wurde nun am gleichen Institut durch neue Messungen der Gruppe um José Crespo in der Abteilung von Joachim Ullrich am Beispiel kohlenstoffartiger Eisen-, Krypton- und Argonionen eindrucksvoll bestätigt (Abb 2). Die Ionen werden hierzu in einer Elektronstrahl-Ionenfalle (EBIT) erzeugt und ihre Röntgenemission in Abhängigkeit von der Elektronenenergie untersucht. Die erwähnten Rekombinationsprozesse zeigen sich dabei als Resonanzen, also einer erhöhten Ausbeute an Röntgenstrahlung bei einer bestimmten Elektronenenergie.

„Es ist eine Art Wettbewerb“, erklärt Zoltán Harman. „Zwar ist die Anregung mehrerer Elektronen beim Einfang unwahrscheinlicher, dafür hat ein so mehrfach angeregtes Ion mehr Möglichkeiten, sich durch Röntgenemission zu stabilisieren.“ Dieser Effekt überwiegt letztlich und ist in der Theorie direkt nachvollziehbar, da die einzelnen Schritte des Prozesses separat analysiert werden können, was im Experiment nicht ohne weiteres möglich ist. Die Ergebnisse demonstrieren auch, wie fruchtbar eine Zusammenarbeit von Theorie und Experiment auf diesem Gebiet ist. Als nächsten Schritt wollen die Forscher untersuchen, wie sich der Trend zu leichteren Elementen fortsetzt. Die Daten für Silicium sind bereits gemessen und werden derzeit ausgewertet.

Originalveröffentlichung:

C. Beilmann, P. H. Mokler, S. Bernitt, C. H. Keitel, J. Ullrich, J. R. Crespo López-Urrutia and Z. Harman:
Prominent Higher-Order Contributions to Electronic Recombination,
Physical Review Letters, 107, 143201 (2011)
doi: 10.1103/PhysRevLett.107.143201

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de/ullrich/page.php?id=36
http://www.mpi-hd.mpg.de/keitel/harman/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie