Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Synchrone Quantensprünge bei Elektronen-Einfang in hochgeladene Ionen

29.09.2011
Rekombination, der Einfang eines Elektrons in ein Ion, ist ein fundamentaler atomarer Prozess mit hoher Relevanz für Plasmaphysik und Astrophysik.
Dabei kann die freigesetzte Energie auf gebundene Elektronen des Ions resonant übertragen werden. Forscher des Heidelberger Max-Planck-Instituts für Kernphysik haben in theoretischen und experimentellen Studien gezeigt, dass dieser Prozess in einigen Fällen effizienter erfolgt, wenn statt zwei, etwa drei oder gar vier Elektronen daran beteiligt sind.

Abb. 1: Schema der di- (a) und trielektronischen (b) Rekombination in kohlenstoffartigen Ionen (sechs Elektronen plus das eingefangene). K und L bezeichnen die beteiligten elektronischen Schalen des Ions. Grafik: MPI für Kernphysik


Abb. 2: Relative Stärke der tri- zur dielektronischen Rekombination in Abhängigkeit der atomaren Ordnungszahl (Kernladung) für kohlenstoffartige Ionen (Ar12+, Fe20+, Kr30+). Unterhalb von Z ≈ 20 überwiegt der trielektronische Prozess. Grafik: MPI für Kernphysik

(Phys. Rev. Lett. 29.09.2011 online)

Hochgeladene Ionen sind hungrig nach Elektronen, da ihnen viele davon fehlen. Sie kommen nur in sehr heißen Umgebungen bis zu einigen Millionen Grad vor, z. B. im Kosmos im Inneren von Sternen oder deren Atmosphären, in Sternexplosionen oder in der Umgebung dessen, was davon übrig bleibt – Neutronensterne oder Schwarze Löcher – wenn diese Materie ansaugen. Sie bevölkern aber auch heiße technische Plasmen, wie sie z. B. in Fusionsexperimenten vorliegen. Sie tragen dort zu Kühlmechanismen bei, die für die Kontrolle des Plasmas wichtig sind. Trifft nämlich ein schnelles Elektron aus dem Plasma auf ein Ion, so kann es von diesem unter Aussendung eines Röntgenphotons eingefangen werden (radiative Rekombination). Dem Plasma gehen also schnelle geladene Teilchen, die magnetisch eingefangen werden können, verloren und es kühlt sich ab, während die neutralen Röntgenquanten das dünne Plasma praktisch ungehindert verlassen können. Für die Steuerung der Plasmatemperatur sind daher Kenntnisse des Rekombinationsverhaltens von hochgeladenen Ionen von großer Wichtigkeit.

Neben dem rein radiativen Einfang besteht auch die Möglichkeit, dass beim Einfang die freigesetzte Energie auf ein gebundenes Elektron übertragen und dieses in einen höheren Zustand angeregt wird. Die ist genau dann möglich wenn die Anregungsenergie dieses Quantensprungs der Summe von Bewegungs- und Bindungsenergie des eingefangenen Elektrons entspricht – man spricht hier von einem resonanten Prozess, der dielektronischen Rekombination, da zwei Elektronen daran teilnehmen (Abb. 1a). Etwa vorhandene weitere gebundene Elektronen spielen die Rolle eines Zuschauers. Beim Rücksprung kann ein Röntgenquant freigesetzt werden – das Ion stabilisiert sich auf diese Weise und behält seine um eine Einheit verringerte Ladung. Zugleich wird das Plasma wie bei der radiativen Rekombination gekühlt.

Nun ist es auch denkbar, dass mehr als zwei Elektron bei dieser Quantenspringerei mitspielen, und dies wurde in neueren Experimenten auch für bis zu vier Elektronen beobachtet: tri- (Abb. 1b) und quadruelektronische Rekombination. Es entspricht durchaus der Erwartung, dass die Prozesse höherer Ordnung, die mehrere Elektronen einbeziehen, unwahrscheinlicher sind. Rechnungen von Zoltán Harman aus der Abteilung von Christoph Keitel am Heidelberger Max-Planck-Institut für Kernphysik ergaben aber, dass die Stärke der mehrelektronischen Rekombination hin zu leichteren Elementen stark zunimmt. Dieser systematische Trend sagt sogar voraus, dass für leichtere kohlenstoffartige Ionen dielektronische Rekombination von der trielektronischen übertroffen wird (Abb. 2).

Diese einigermaßen überraschende Vorhersage wurde nun am gleichen Institut durch neue Messungen der Gruppe um José Crespo in der Abteilung von Joachim Ullrich am Beispiel kohlenstoffartiger Eisen-, Krypton- und Argonionen eindrucksvoll bestätigt (Abb 2). Die Ionen werden hierzu in einer Elektronstrahl-Ionenfalle (EBIT) erzeugt und ihre Röntgenemission in Abhängigkeit von der Elektronenenergie untersucht. Die erwähnten Rekombinationsprozesse zeigen sich dabei als Resonanzen, also einer erhöhten Ausbeute an Röntgenstrahlung bei einer bestimmten Elektronenenergie.

„Es ist eine Art Wettbewerb“, erklärt Zoltán Harman. „Zwar ist die Anregung mehrerer Elektronen beim Einfang unwahrscheinlicher, dafür hat ein so mehrfach angeregtes Ion mehr Möglichkeiten, sich durch Röntgenemission zu stabilisieren.“ Dieser Effekt überwiegt letztlich und ist in der Theorie direkt nachvollziehbar, da die einzelnen Schritte des Prozesses separat analysiert werden können, was im Experiment nicht ohne weiteres möglich ist. Die Ergebnisse demonstrieren auch, wie fruchtbar eine Zusammenarbeit von Theorie und Experiment auf diesem Gebiet ist. Als nächsten Schritt wollen die Forscher untersuchen, wie sich der Trend zu leichteren Elementen fortsetzt. Die Daten für Silicium sind bereits gemessen und werden derzeit ausgewertet.

Originalveröffentlichung:

C. Beilmann, P. H. Mokler, S. Bernitt, C. H. Keitel, J. Ullrich, J. R. Crespo López-Urrutia and Z. Harman:
Prominent Higher-Order Contributions to Electronic Recombination,
Physical Review Letters, 107, 143201 (2011)
doi: 10.1103/PhysRevLett.107.143201

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de/ullrich/page.php?id=36
http://www.mpi-hd.mpg.de/keitel/harman/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

nachricht Laser-Metronom ermöglicht Rekord-Synchronisation
12.01.2017 | Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Feinstaub weckt schlafende Viren in der Lunge

16.01.2017 | Biowissenschaften Chemie

Energieeffizienter Gebäudebetrieb: Monitoring-Plattform MONDAS identifiziert Einsparpotenzial

16.01.2017 | Messenachrichten

Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?

16.01.2017 | Biowissenschaften Chemie