Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Symmetrie zwischen Materie und Antimaterie mit Rekordgenauigkeit bestätigt

08.11.2016

Experiment am CERN erzielt höchste Genauigkeit bei der Bestimmung des Massenverhältnisses von Antiproton zu Elektron

Nach dem Standardmodell der Elementarteilchenphysik existiert zu jedem Teilchen ein Antiteilchen, das sich exakt gleich verhalten sollte. „Anti-Menschen“ in einer Anti-Welt würden somit die gleichen physikalischen Gesetze beobachten und überhaupt die gleichen Erfahrungen machen wie wir.


Schema des experimentellen Aufbaus, mit dem am CERN das Verhältnis von Antiproton- zu Elektron-Masse bestimmt wird.

Graphik: Masaki Hori

Diese Annahme ist jedoch nur schwer zu überprüfen, da es fast unmöglich ist, Messungen an Antimaterie vorzunehmen: wenn immer ein Antiteilchen auf sein materielles Gegenstück trifft, vernichten sich die beiden Teilchen gegenseitig unter Freisetzung von Energie.

Ein Team von Wissenschaftlern am Max-Planck-Institut für Quantenoptik in Garching und der Universität Tokio (Japan), unter der Beteiligung der Universität Brescia (Italien) und des Wigner-Instituts (Budapest, Ungarn), hat jedoch einen Weg gefunden, diese Hürde zu nehmen. In einem Experiment am Europäischen Zentrum für Hochenergiephysik CERN in Genf (Schweiz) fangen die Wissenschaftler Antiprotonen in Heliumatomen ein. Da die Heliumatome aufgrund neuer Kühltechniken fast zum Stillstand kommen, lassen sich an den so gefangenen Antiprotonen hochgenaue spektroskopische Untersuchungen durchführen.

„Wir erreichen für das Verhältnis von Antiprotonen- zu Elektron-Masse eine Genauigkeit von 800 zu einer Billion (1012)“, sagt Dr. Masaki Hori, Leiter der Forschungsgruppe „Antimatter Spectroscopy“, die mit der Abteilung Laserspektroskopie von Prof. Theodor W. Hänsch am MPQ assoziiert ist. (Science, 4. November, 2016).

1997 bauten Forscher des MPQ in Zusammenarbeit mit weiteren europäischen, amerikanischen und japanischen Gruppen eine neue Anlage namens „Antiprotonen Decelerator“ (Abbremser) am CERN. Hier werden die in Teilchenkollisionen bei hohen Energien erzeugten Antiprotonen gesammelt, zirkulieren in einer ringförmigen Vakuumkammer von 190 Meter Umfang und werden dort schrittweise abgebremst, bevor sie den Experimenten zugeführt werden. Die sogenannte ASACUSA-Gruppe (für „Atomic Spectroscopy and Collisions using Slow Antiprotons“, genannt nach einem Stadtteil in Tokio), zu der Dr. Hori als einer der Projektleiter gehört, schickt die Antiprotonen auf ein Helium-Target. Gewöhnliches Helium besteht aus einen Atomkern, der von zwei Hüllenelektronen umrundet wird.

Wenn die Antiprotonen auf das Heliumgas treffen, ersetzen ungefähr 3% der negativ geladenen Antiteilchen eines der Hüllenelektronen. Das Antiproton befindet sich in einer hoch angeregten Umlaufbahn in einer Entfernung von etwa 100 Pikometern (10-10 Metern) von dem Heliumkern. Um seine Masse zu bestimmen, führen die Wissenschaftler hochpräzise spektroskopische Untersuchungen durch. Dazu bestrahlen sie die antiprotonischen Heliumatome mit Laserlicht, dessen Frequenz genau so eingestellt ist, dass das Antiproton von einer Energiebahn auf die nächste hüpft. Vergleicht man diese Frequenz mit theoretischen Berechnungen, dann lässt sich daraus die Masse des Antiprotons im Verhältnis zur Masse des Elektrons ableiten.

Die ständige thermische Bewegung der antiprotonischen Atome ruft jedoch prinzipielle Ungenauigkeiten hervor: Atome, die sich dabei auf den Laser zu bewegen, sehen aufgrund der Dopplerverschiebung eine andere Frequenz als Atome, die sich davon weg bewegen. Der große Fortschritt, über den das ASACUSA-Team jetzt in der Zeitschrift Science berichtet, wurde durch ein neues Kühlverfahren erzielt, das die Atome auf Temperaturen nahe dem absoluten Nullpunkt, zwischen 1,5 und 1,7 Kelvin, bringt. „ Wir benutzten dabei die Methode der „Buffergas-Kühlung“, erklärt Dr. Hori.

„Es ist überraschend, dass dieses Verfahren überhaupt funktioniert. Denn normalerweise würde man annehmen, dass die Atome des Buffergases, wenn sie mit den zur Hälfte aus Antimaterie bestehenden Heliumatomen zusammenstoßen, annihilieren. Hier wird die Annihilation aber dadurch verhindert, dass die Antiprotonen von dem verbliebenen Hüllenelektron sicher abgeschirmt werden.“

Die neuen Messungen, die auf zwischen 2010 und 2104 genommenen Daten von ca. 2 Milliarden Atomen beruhen, zeigten, dass das Antiproton 1836.1526734(15) Mal so schwer ist wie das Elektron (die Zahl in der Klammer entspricht der Ungenauigkeit einer Standardabweichung). Dieser Wert steht in exzellenter Übereinstimmung mit einer kürzlich erfolgten Messung des Verhältnisses von Proton- zu Elektron-Masse.

Die Physiker glauben, dass in der Natur eine fundamentale Symmetrie herrscht, die sogenannte C(harge)P(arity)T(ime) Invarianz (das steht für Ladungskonjugation, Raumspiegelung und Zeitumkehr). Das sogenannte CPT-Theorem postuliert, dass eine „Antiwelt“, in der alle Materie im Universum durch Antimaterie ersetzt, rechts und links vertauscht und überdies der Fluss der Zeit umkehrt wird, von unserer realen Welt nicht zu unterscheiden ist. Könnte experimentell ein noch so kleiner Unterschied zwischen Materie und Antimaterie festgestellt werden, so würde das einen Bruch dieser fundamentalen Symmetrie bedeuten.

Und diese Beobachtung könnte vielleicht zu einer Erklärung führen, warum das Universum, in dem wir leben, vollständig aus Materie besteht, obwohl doch bei seiner Entstehung im großen Urknall Materie und Antimaterie in gleicher Menge erzeugt wurden. „Wir sind zuversichtlich, dass wir die Genauigkeit unserer Messungen noch steigern können. Dafür wollen wir die Buffergas-Kühlung mit der Zwei-Photon-Spektroskopie kombinieren, die schon für sich die durch den Dopplereffekt hervorgerufenen Ungenauigkeiten reduziert“, resümiert Dr. Hori. Zu diesem Zweck wird am CERN schon das nächste Experiment mit Namen ELENA geplant. Olivia Meyer-Streng

Originalveröffentlichung:
Masaki Hori, Hossein Aghai-Khozani, Anna Sótér, Daniel Barna, Andreas Dax, Ryugo Hayano, Takumi Kobayashi, Yohei Murakami, Koichi Todoroki, Hiroyuki Yamada, Dezső Horváth, Luca Venturelli
Buffer-gas cooling of antiprotonic helium to 1.5-1.7 K, and
antiproton-to-electron mass ratio
Science, 4. November 2016, DOI: 10.1126/science.aaf6702

Kontakt:
Dr. Masaki Hori
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching b. München
Telefon: +49 (0)89 32 905 - 268
E-Mail: masaki.hori@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Max-Planck-Princeton-Partnerschaft in der Fusionsforschung bestätigt
23.11.2017 | Max-Planck-Institut für Plasmaphysik

nachricht Magnetfeld-Sensor Argus „sieht“ Kräfte im Bauteil
23.11.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten

Seminar „Leichtbau im Automobil- und Maschinenbau“ im Haus der Technik Berlin am 16. - 17. Januar 2018

23.11.2017 | Seminare Workshops

Biohausbau-Unternehmen Baufritz erhält von „ Capital“ die Auszeichnung „Beste Ausbilder Deutschlands“

23.11.2017 | Unternehmensmeldung