Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Symmetrie zwischen Materie und Antimaterie mit Rekordgenauigkeit bestätigt

08.11.2016

Experiment am CERN erzielt höchste Genauigkeit bei der Bestimmung des Massenverhältnisses von Antiproton zu Elektron

Nach dem Standardmodell der Elementarteilchenphysik existiert zu jedem Teilchen ein Antiteilchen, das sich exakt gleich verhalten sollte. „Anti-Menschen“ in einer Anti-Welt würden somit die gleichen physikalischen Gesetze beobachten und überhaupt die gleichen Erfahrungen machen wie wir.


Schema des experimentellen Aufbaus, mit dem am CERN das Verhältnis von Antiproton- zu Elektron-Masse bestimmt wird.

Graphik: Masaki Hori

Diese Annahme ist jedoch nur schwer zu überprüfen, da es fast unmöglich ist, Messungen an Antimaterie vorzunehmen: wenn immer ein Antiteilchen auf sein materielles Gegenstück trifft, vernichten sich die beiden Teilchen gegenseitig unter Freisetzung von Energie.

Ein Team von Wissenschaftlern am Max-Planck-Institut für Quantenoptik in Garching und der Universität Tokio (Japan), unter der Beteiligung der Universität Brescia (Italien) und des Wigner-Instituts (Budapest, Ungarn), hat jedoch einen Weg gefunden, diese Hürde zu nehmen. In einem Experiment am Europäischen Zentrum für Hochenergiephysik CERN in Genf (Schweiz) fangen die Wissenschaftler Antiprotonen in Heliumatomen ein. Da die Heliumatome aufgrund neuer Kühltechniken fast zum Stillstand kommen, lassen sich an den so gefangenen Antiprotonen hochgenaue spektroskopische Untersuchungen durchführen.

„Wir erreichen für das Verhältnis von Antiprotonen- zu Elektron-Masse eine Genauigkeit von 800 zu einer Billion (1012)“, sagt Dr. Masaki Hori, Leiter der Forschungsgruppe „Antimatter Spectroscopy“, die mit der Abteilung Laserspektroskopie von Prof. Theodor W. Hänsch am MPQ assoziiert ist. (Science, 4. November, 2016).

1997 bauten Forscher des MPQ in Zusammenarbeit mit weiteren europäischen, amerikanischen und japanischen Gruppen eine neue Anlage namens „Antiprotonen Decelerator“ (Abbremser) am CERN. Hier werden die in Teilchenkollisionen bei hohen Energien erzeugten Antiprotonen gesammelt, zirkulieren in einer ringförmigen Vakuumkammer von 190 Meter Umfang und werden dort schrittweise abgebremst, bevor sie den Experimenten zugeführt werden. Die sogenannte ASACUSA-Gruppe (für „Atomic Spectroscopy and Collisions using Slow Antiprotons“, genannt nach einem Stadtteil in Tokio), zu der Dr. Hori als einer der Projektleiter gehört, schickt die Antiprotonen auf ein Helium-Target. Gewöhnliches Helium besteht aus einen Atomkern, der von zwei Hüllenelektronen umrundet wird.

Wenn die Antiprotonen auf das Heliumgas treffen, ersetzen ungefähr 3% der negativ geladenen Antiteilchen eines der Hüllenelektronen. Das Antiproton befindet sich in einer hoch angeregten Umlaufbahn in einer Entfernung von etwa 100 Pikometern (10-10 Metern) von dem Heliumkern. Um seine Masse zu bestimmen, führen die Wissenschaftler hochpräzise spektroskopische Untersuchungen durch. Dazu bestrahlen sie die antiprotonischen Heliumatome mit Laserlicht, dessen Frequenz genau so eingestellt ist, dass das Antiproton von einer Energiebahn auf die nächste hüpft. Vergleicht man diese Frequenz mit theoretischen Berechnungen, dann lässt sich daraus die Masse des Antiprotons im Verhältnis zur Masse des Elektrons ableiten.

Die ständige thermische Bewegung der antiprotonischen Atome ruft jedoch prinzipielle Ungenauigkeiten hervor: Atome, die sich dabei auf den Laser zu bewegen, sehen aufgrund der Dopplerverschiebung eine andere Frequenz als Atome, die sich davon weg bewegen. Der große Fortschritt, über den das ASACUSA-Team jetzt in der Zeitschrift Science berichtet, wurde durch ein neues Kühlverfahren erzielt, das die Atome auf Temperaturen nahe dem absoluten Nullpunkt, zwischen 1,5 und 1,7 Kelvin, bringt. „ Wir benutzten dabei die Methode der „Buffergas-Kühlung“, erklärt Dr. Hori.

„Es ist überraschend, dass dieses Verfahren überhaupt funktioniert. Denn normalerweise würde man annehmen, dass die Atome des Buffergases, wenn sie mit den zur Hälfte aus Antimaterie bestehenden Heliumatomen zusammenstoßen, annihilieren. Hier wird die Annihilation aber dadurch verhindert, dass die Antiprotonen von dem verbliebenen Hüllenelektron sicher abgeschirmt werden.“

Die neuen Messungen, die auf zwischen 2010 und 2104 genommenen Daten von ca. 2 Milliarden Atomen beruhen, zeigten, dass das Antiproton 1836.1526734(15) Mal so schwer ist wie das Elektron (die Zahl in der Klammer entspricht der Ungenauigkeit einer Standardabweichung). Dieser Wert steht in exzellenter Übereinstimmung mit einer kürzlich erfolgten Messung des Verhältnisses von Proton- zu Elektron-Masse.

Die Physiker glauben, dass in der Natur eine fundamentale Symmetrie herrscht, die sogenannte C(harge)P(arity)T(ime) Invarianz (das steht für Ladungskonjugation, Raumspiegelung und Zeitumkehr). Das sogenannte CPT-Theorem postuliert, dass eine „Antiwelt“, in der alle Materie im Universum durch Antimaterie ersetzt, rechts und links vertauscht und überdies der Fluss der Zeit umkehrt wird, von unserer realen Welt nicht zu unterscheiden ist. Könnte experimentell ein noch so kleiner Unterschied zwischen Materie und Antimaterie festgestellt werden, so würde das einen Bruch dieser fundamentalen Symmetrie bedeuten.

Und diese Beobachtung könnte vielleicht zu einer Erklärung führen, warum das Universum, in dem wir leben, vollständig aus Materie besteht, obwohl doch bei seiner Entstehung im großen Urknall Materie und Antimaterie in gleicher Menge erzeugt wurden. „Wir sind zuversichtlich, dass wir die Genauigkeit unserer Messungen noch steigern können. Dafür wollen wir die Buffergas-Kühlung mit der Zwei-Photon-Spektroskopie kombinieren, die schon für sich die durch den Dopplereffekt hervorgerufenen Ungenauigkeiten reduziert“, resümiert Dr. Hori. Zu diesem Zweck wird am CERN schon das nächste Experiment mit Namen ELENA geplant. Olivia Meyer-Streng

Originalveröffentlichung:
Masaki Hori, Hossein Aghai-Khozani, Anna Sótér, Daniel Barna, Andreas Dax, Ryugo Hayano, Takumi Kobayashi, Yohei Murakami, Koichi Todoroki, Hiroyuki Yamada, Dezső Horváth, Luca Venturelli
Buffer-gas cooling of antiprotonic helium to 1.5-1.7 K, and
antiproton-to-electron mass ratio
Science, 4. November 2016, DOI: 10.1126/science.aaf6702

Kontakt:
Dr. Masaki Hori
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching b. München
Telefon: +49 (0)89 32 905 - 268
E-Mail: masaki.hori@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics