Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supraleitung stabilisiert in Dünnschichtkeramik

21.06.2016

Physiker haben an BESSY II des Helmholtz-Zentrum Berlin (HZB) einen Weg gefunden, um die Supraleitung zu beeinflussen. Sie haben ein Materialsystem aus dünnen ferromagnetischen und supraleitenden Schichten untersucht. An den Grenzflächen bildeten sich Ladungsdichtewellen aus, die erstaunlich weit in die supraleitende Schicht hineinreichen. Der supraleitende Effekt konnte dadurch stabilisiert werden. Die Ergebnisse sind nun in Nature Materials publiziert.

Hochtemperatursupraleiter sind seit gut 30 Jahren bekannt: es sind besondere Metalloxid-Verbindungen, die Strom ohne Energieverlust leiten können. Anders als konventionelle Supraleiter müssen sie dafür nicht bis nahe an den absoluten Temperatur-Nullpunkt gekühlt werden. Vielmehr schaffen sie dies bei vergleichsweise hohen Temperaturen.


Mit Hilfe der EELS-Elektronenspektroskopie lassen sich im Rasterelektronenmikroskop die Positionen der einzelnen Atome in der Heterostruktur kartieren: Die supraleitenden YBaCuO-Regionen sind an Yttrium (Blau) und Kupfer (pink) erkennbar, während in der ferromagnetischen Schicht Mangan (grün) und Lanthan (rot) eingebaut ist. Bild: MPI Stuttgart.

Ein typischer Hochtemperatursupraleiter ist Yttrium-Barium-Kupferoxid (YBaCuO) mit einer Sprungtemperatur von 92 Kelvin (minus 181 Grad Celsius). Das Kühlen mit flüssigem Stickstoff reicht aus, um diese Temperatur zu unterschreiten. Ein Team um Prof. Bernhard Keimer vom MPI für Festkörperphysik in Stuttgart und Dr. Eugen Weschke vom HZB haben nun in einem System aus dünnen YBaCuO- sowie ferromagnetischen Schichten entdeckt, wie sich Valenzelektronen verschieben lassen.

Kleinste kollektive Verschiebungen der Ladungen beobachtet

Mit resonanter Röntgenstreuung haben sie an BESSY II die Grenzflächen zwischen den ferromagnetischen und supraleitenden Schichten untersucht, wobei die ferromagnetischen Schichten 10 Nanometer dick waren; die YBaCuO-Schichten waren bis zu 50 Nanometer dick.

Alex Frano konnte dabei in seiner Doktorarbeit nachweisen, dass sich in den Kupferatomen der YBaCuO-Dünnschicht die Valenzelektronen kollektiv verschieben. Dies führt dazu, dass sich so genannte Ladungsdichtewellen in der YBaCuO-Schicht bilden, wobei diese nicht nur in unmittelbarer Nähe der Grenzflächen auftreten, sondern sich über die gesamte Dicke der Schicht bilden. „Das ist erstaunlich, weil frühere Untersuchungen gezeigt hatten, dass Supraleitung die Ausbildung von Ladungsdichtewellen unterdrückt“, sagt Frano.

Koexistenz von Supraleitung und Ladungsdichtewelle

„Indem wir die Grenzflächen in die Heterostrukturen gebracht haben, ist es gelungen die Ladungsdichtewellen in Gegenwart der Supraleitung zu stabilisieren“, erläutert Eugen Weschke. Die YBaCuO-Schichten bleiben supraleitend, obwohl sich gleichzeitig die Ladungsdichten periodisch ändern. „Wie genau diese Koexistenz auf mikroskopischer Skala aussieht, ist eine spannende Frage, die mit weiteren Experimenten untersucht werden muss“, so der HZB-Forscher. Besonders interessant wäre es herauszufinden, ob man über diesen Mechanismus und durch weiteres geschicktes Design der Grenzflächen den supraleitenden Zustand gezielt kontrollieren kann.

Original-Publikation:

Long-range charge-density-wave proximity effect at cuprate/manganate interfaces, A. Frano, S. Blanco-Canosa, E. Schierle, Y. Lu, M. Wu, M. Bluschke, M. Minola, G. Christiani, H. U. Habermeier, G. Logvenov, Y. Wang, P. A. van Aken, E. Benckiser, E. Weschke, M. Le Tacon & B. Keimer, Nature Materials (2016) doi: 10.1038/nmat4682

Bildunterschrift:
Mit Hilfe der EELS-Elektronenspektroskopie lassen sich im Rasterelektronenmikroskop die Positionen der einzelnen Atome in der Heterostruktur kartieren: Die supraleitenden YBaCuO-Regionen sind an Yttrium (Blau) und Kupfer (pink) erkennbar, während in der ferromagnetischen Schicht Mangan (grün) und Lanthan (rot) eingebaut ist. Bild: MPI Stuttgart.

Zur Publikation:

Long-range charge-density-wave proximity effect at cuprate/manganate interfaces, A. Frano, S. Blanco-Canosa, E. Schierle, Y. Lu, M. Wu, M. Bluschke, M. Minola, G. Christiani, H. U. Habermeier, G. Logvenov, Y. Wang, P. A. van Aken, E. Benckiser, E. Weschke, M. Le Tacon & B. Keimer, Nature Materials (2016) doi: 10.1038/nmat4682

Kontakt:

Dr. Eugen Weschke
E-Mail: eugen.weschke@helmholtz-berlin.de

Presse
Dr. Antonia Rötger
E-Mail: antonia.roetger@helmholtz-berlin.de

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14467&sprache=de&ty...
http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4682.html

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise