Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supraleitung und Magnetismus - Von Rivalen zu Partnern

12.09.2008
Die wilde Quantenwelt produziert Zustände, die in der klassischen Physiklehre nicht vorgesehen sind. Ein erstaunlicher neuartiger Zustand wird in der heutigen Ausgabe des Magazins "Science" von einem internationalen Wissenschaftlerteam um den Physiker Michel Kenzelmann vom Paul Scherrer Institut vorgestellt.

Die Experimente wurden an der Schweizer Spallations-Neutronenquelle (SINQ) des Paul Scherrer Instituts PSI durchgeführt. Mit dem Neutronenstrahl der SINQ ist es möglich auf mikroskopischer Ebene die inneren Eigenschaften von Materialien zu untersuchen, ohne sie dabei zu zerstören. Mit dieser Methode lassen sich Vorgänge beobachten, die sonst mit keiner anderen Technik zu sehen sind.

In Zer-Kobalt-Indium verbrüdern sich Supraleitung und Magnetismus

Dem Forscherteam gelang eine überraschende Entdeckung. Sie stellten fest, dass das untersuchte Material sich magnetisch ordnet, aber nur solange es supraleitend ist. Dieses Ergebnis ist verblüffend, da diese beiden Phänome normalerweise miteinander konkurrieren und sich in einem Material gegenseitig zu verdrängen suchen, hier aber offenbar nur gemeinsam existieren können.

Wechselwirkung zwischen Magnetismus und Supraleitung

In elektrischen Leitern wird Strom von Elektronen transportiert. Dabei kommt es zu einem Verlust von Energie, sobald die Elektronen mit den positiven Kristallionen des Leiters zusammenstossen und dadurch von ihrer optimalen Bahn abgelenkt werden. Der verlustfreie Transport von Strom in Supraleitern beruht darauf, dass sich die Elektronen bei tiefen Temperaturen zu sogenannten "Cooper-Paaren" zusammenschliessen. Diese Elektronenpaare haben ganz andere Eigenschaften als einzelne Elektronen und verhalten sich völlig anders; sie gehen in einen neuen Quantenzustand über. Dieser Zustand erlaubt den Cooper-Paaren, sich gegenseitig "abzusprechen" um Zusammenstösse zu vermeiden. Dadurch ist ein verlustfreier Stromtransport möglich.

Elektronen besitzen ein magnetisches Moment, das man sich wie eine Art Kompassnadel vorstellen muss. In einem Cooper-Paar zeigen die "Kompassnadeln" der beiden Elektronen generell immer in die exakt gegenüberliegende Richtung und heben ihren Magnetismus dadurch auf. Wird in diesem supraleitenden Zustand ein Magnetfeld angelegt geraten die magnetischen Momente des Elektronenpaars in Bedrängnis. Dies geschieht einerseits dadurch, dass das Magnetfeld Ströme induziert, die die Cooper-Paare aufbrechen und andererseits auch weil das Magnetfeld seine magnetische Ordnung auf die magnetischen Momente des Cooper-Paares überträgt. Gelingt dies dem Magnetfeld löst sich das Cooper-Paar auf und der elektrische Leiter verliert seinen supraleitenden Zustand. Auf diese Art rivalisieren magnetische Ordnung und Supraleitung in vielen Materialien um die Vorherrschaft.

Laut Kenzelmann, Wissenschaftler am PSI und Professor an der ETH Zürich, schliessen magnetische Ordnung und Supraleitung sich zwar nicht immer gegenseitig aus, dulden sich aber höchstens. "Supraleitung und magnetische Ordnung verhalten sich in allen bisher bekannten Materialen wie zwei Rivalen, die um dasselbe Revier kämpfen und den jeweils anderen auszuschalten suchen."

Supraleitung induziert magnetische Ordnung

In ihrem Experiment kühlten die Forscher einen Einkristall bestehend aus den Elementen Zer, Kobalt und Indium (CeCoIn5) auf auf minus 273,1 Grad Celsius ab. Bei derartig tiefen Temperaturen hören alle atomaren Bewegungen des Kristalls auf und die durchfliessenden Elektronen können sich zu sich zu Cooper-Paaren zusammenschliessen. Dadurch wird der supraleitende, elektrisch widerstandsfreie Zustand erreicht, der es ermöglicht, den Strom verlustfrei zu transportieren. Anschliessend wurde das Material magnetischen Feldern ausgesetzt.

Dabei haben die Forscher festgestellt, dass bei hohen magnetischen Feldern ein neuartiger supraleitender Zustand auftritt, der von magnetischer Ordnung begleitet und nicht zerstört wird. Zwar hat man die Koexistenz von magnetischer Ordnung und Supraleitung schon in anderen Fällen beobachtet. Der neue Aspekt in dieser Zer-Verbindung ist jedoch die Tatsache, dass die magnetische Ordnung nur während der supraleitenden Phase auftritt und zusammen mit dieser bei noch höheren magnetischen Feldern im Wesentlichen wieder spurlos verschwindet. Diese Beobachtung legt nahe, dass hier überraschenderweise der Magnetismus von der Supraleitung begünstigt und stabilisiert wird.

"Unsere Ergebnisse zeigen ganz eindeutig, dass die Supraleitung für das Entstehen dieses Magnetismus entscheidend ist. Die Studie wird helfen genauer zu verstehen, wie sich die Elektronenpaare in magnetischen Supraleitern überhaupt bilden. Wir hoffen, dass dieses Wissen dann zukünftig für technologische Anwendungen genutzt werden kann", erklärt Kenzelmann.

Literaturhinweis:
M. Kenzelmann et al.;Coupled Superconducting and Magnetic Order in CeCoIn5; Science, Vol 321, 12 Sept. 2008
Für weitere Auskünfte:
Prof. Dr. Michel Kenzelmann,
Labor für Methoden und Entwicklung,
Paul Scherrer Insitut,
Telefon +41 (0)56 310 53 81,
michel.kenzelmann@psi.ch

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie