Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Superschwer und trotzdem stabil

20.08.2012
Messungen des Schaleneffekts in Atomkernen tragen dazu bei herauszufinden, ab welcher Masse extrem schwere künstliche Elemente nicht mehr zerfallen

Das schwerste Element der Erde ist Uran mit der Ordnungszahl 92 im Periodensystem. Superschwere Elemente bis zur Nummer 118 sind zwar schon künstlich erzeugt worden, doch ihre Atomkerne zerplatzen schnell. Dank eines subtilen Quanteneffekts könnten allerdings noch schwerere Atomkerne jenseits Element 120 jahrelang existieren.


Penningfalle der Shiptrap-Apparatur
© GSI Darmstadt - Gabi Otto

Nach dieser mutmaßlichen „Insel der Stabilität“ sucht die Physik schon lange. Ein internationales Team, darunter Klaus Blaums Gruppe vom Max-Planck-Institut für Kernphysik in Heidelberg, ist dabei jetzt einen entscheidenden Schritt weitergekommen. In einem spektakulären Präzisionsexperiment am GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt konnte die Kooperation erstmals die Stärke der Schalenstabilität in schweren Kernen mit 152 Neutronen messen. Ein Durchbruch im Verständnis der Physik von Atomkernen.

Physiker assoziieren mit dem Namen „von Weizsäcker“ nicht zuerst den Altbundespräsidenten, sondern dessen älteren Bruder Carl Friedrich. Dieser hat als Physiker in den 1930er- und 40er-Jahren entscheidend zur Beschreibung eines so kleinen wie eminent wichtigen Baustein der Materie beigetragen – dem Atomkern. „Dieses Jahr wäre Carl Friedrich von Weizsäcker hundert Jahre alt geworden“, erinnert Klaus Blaum an den deutschen Physiker, dessen Atomkernmodell noch heute in modifizierter Form angewendet wird. Im lange fast stagnierenden Wissen über den Aufbau von Atomkernen ist nun Blaum und seinen Kollegen in einer großen internationalen Kooperation ein entscheidender Durchbruch gelungen. Auf dieses Ziel hatten viele Physiker seit Jahrzehnten hingearbeitet, und der 2007 verstorbene Carl Friedrich von Weizsäcker wäre zweifelsohne fasziniert gewesen.

Ein Atom besteht, salopp gesagt, aus einer ausgedehnten Elektronenwolke und einem vergleichsweise winzigen Atomkern. Trotzdem vereinigt der Kern die gesamte Masse des Atoms in sich. Nicht nur das, ein Atomkern ist zudem äußerst komplex aufgebaut. Und je größer so ein Kern ist, desto unübersichtlicher wird das Spiel der Kräfte, das seine Existenz bestimmt.

Zwei Kräfte liefern sich in Atomkernen einen Wettstreit
Protagonisten in diesem Spiel sind die Kernbausteine, die neutralen Neutronen und die elektrisch geladenen Protonen. Die Protonen stoßen sich mit der zweitstärksten Kraft der Physik, der elektrischen Kraft, heftig voneinander ab. Diese Abstoßung ringt jedoch die stärkste heute bekannte Kraft der Physik, die starke Kraft, nieder. Mit ihrem superstarken Klammergriff zwingt sie den Kern zusammen. Doch wie jeder Superheld, sei er Achilles, Siegfried oder Superman, hat sie einen Schwachpunkt: ihre Reichweite ist gering. Ihre superstarken Arme sozusagen sind viel kürzer als diejenigen der elektrischen Kraft geraten. Die Folge: Je größer ein Atomkern wird, desto schlechter kann die starke Kraft ihn gegen die elektrische Kraft zusammenhalten. Ab einer gewissen Größe wird er instabil und platzt auseinander.

Allerdings trifft dieses einfache Bild nur grob zu. Ein großer Atomkern bildet nämlich mit seinen über hundert Protonen und weit mehr als hundert Neutronen ein äußerst komplexes Vielteilchensystem, das wie eine Zwiebel in Schalen unterschiedlicher Protonen- und Neutronenzahlen aufgebaut ist. In dieser geballten Ansammlung von Quantenteilchen spielt nun ein Effekt, der aus den Ordnungsprinzipien der Quantenwelt erwächst, entscheidend mit: Atomkerne mit perfekt gefüllten Schalen sind stabiler als andere. Dieser Effekt führt sogar dazu, dass vergleichsweise riesige Atomkerne zusammengehalten werden, die eigentlich zerfallen müssten.

Wer noch Erinnerungen an den Schulunterricht in Chemie oder Physik hat, kennt diesen Schaleneffekt in etwas anderer Form. Auch die Elektronenwolke lässt sich in Energieschalen unterteilen, und die Elektronenschalen von Edelgasen sind besonders stabil. Ursache ist wieder dieses Ordnungsprinzip. Elektronen sind wie Protonen und Neutronen gewissermaßen Individualisten der Quantenwelt, die einen Quantenzustand für sich allein beanspruchen. Und jede Schale bietet nur eine begrenzte Anzahl von Plätzen. Bei den Edelgasen sind diese Plätze in der äußersten Schale voll, deshalb sind sie chemisch extrem stabil. Dieser Quanteneffekt schützt sie gegen die Angriffe anderer, chemisch aggressiver Elemente, die zum Beispiel ihre nicht ganz vollständig besetzen Schalen unbedingt mit Elektronen anderer Atome füllen wollen. „Das ist wie ein Ringelreihenspiel mit Kindern, bei denen der tanzende Ring geschlossen ist“, erklärt Blaum: „Für weitere Kinder wird es dann schwieriger, noch hinein zu kommen.“

Messungen mit der weltweit empfindlichsten Waage für Atomkerne

Dieses Schalenspiel läuft auch in den Atomkernen ab. Allerdings sind die Schalen der großen Atomkerne viel komplexer aufgebaut als Elektronenschalen. Die vielen Kernbausteine beeinflussen sich alle gegenseitig. Deshalb können die Theoretiker bislang nur sehr ungenau abschätzen, welche Schalen bei welcher „magischen“ Zahl von Bausteinen wirklich gefüllt sind. Das müssen also Experimentatoren mit ausgefeilten Tests herausfinden. Und das gelang der Kooperation, an der Blaums Team beteiligt war, nun in Darmstadt erstmals mit den Elementen 102, Nobelium, und 103, Lawrencium. Auf deutscher Seite waren daran neben den Physikern aus Darmstadt und Heidelberg Gruppen der Universitäten in Mainz, Gießen, Greifswald und der Ludwig-Maximilians-Universität München beteiligt.

Die beiden Elemente 102 und 103 erzeugten die Forscher zunächst mit dem Schwerionenbeschleuniger in Darmstadt. Allerdings entstehen so schwere Elemente dabei nur sehr selten. Diese wenigen elektrisch geladenen Atome fängt eine aufwendige Apparatur namens SHIPTRAP ein – und auch das gelingt nur zu einem kleinen Teil. SHIPTRAP ist die empfindlichste Waage der Welt für Atomkerne, die schwerer als Uran sind. Sie kann die Masse dieser Atomkerne ungeheuer genau wiegen. Natürlich funktioniert SHIPTRAP völlig anders als eine Haushaltswaage. Sie fängt das elektrisch geladene Atom (Ion) in einer Falle aus elektromagnetischen Feldern ein. In diesem Schwebekissen vollführt das Ion eine komplexe Schaukelbewegung, bei der die Schaukelfrequenz von der Masse des Atomkerns abhängt.

Die magische Zahl lautet 152

Aus der Frequenz gewinnen die Physiker also eine hochpräzise Information über Masse des Kerns. Doch nun stellt sich die Frage, wie sie von der Masse des Kerns zu dessen inneren Aufbau kommen. Der Schlüssel ist Einsteins berühmte Formel E = mc2. Nach ihr sind Masse und Energie zwei Seiten derselben Medaille. Also liefert die gemessene Masse die Energie, die im Atomkern steckt. Und ein Teil dieser Energie, die sogenannte „Bindungsenergie“, liefert wiederum die entscheidende Information über den genauen Schalenaufbau des Kerns. Mit dieser raffinierten Methode hat das Team nun aus dem Wiegen der Elemente 102 und 103 mit einer variierenden Zahl von Neutronen eine „magische“ Zahl gewonnen: 152 Neutronen muss die äußere Neutronen-Schale enthalten. Dann ist sie voll und stabilisiert den Kern.

„Damit konnten wir einige der bis dahin benutzten Modelle für Atomkerne als unzutreffend ausschließen“, kommentiert Blaum die weitreichenden Folgen dieses Durchbruchs. Das Bild des inneren Aufbaus von schweren Atomkernen wird nun nach Jahrzehnten endlich klarer. Mit diesem Wissen gewappnet können die Physiker nun gezielter nach der berühmten Insel der Stabilität suchen. „Wir erwarten sie ungefähr bei Element 120“, sagt Blaum, „und zwar in einem Kern mit etwa 180 Neutronen.“

Sind solche langlebigen, superschweren Elemente künstlich herstellbar, dann könnten sie vielleicht sogar bei seltenen Ereignissen im Universum entstehen. Noch ist kein solches Extremelement nachgewiesen, aber der Kosmos ist gigantisch. Auf jeden Fall erweitert solche Grundlagenforschung unser Wissen darüber, was die Welt im Innersten zusammenhält.

Ansprechpartner

Prof. Dr. Klaus Blaum
Max-Planck-Institut für Kernphysik, Heidelberg
Telefon: +49 6221 516-851
Fax: +49 6221 516-852
Email: klaus.blaum@­mpi-hd.mpg.de
Dr. Bernold Feuerstein
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kernphysik, Heidelberg
Telefon: +49 6221 516-281
Email: info@­mpi-hd.mpg.de
Originalveröffentlichung
E. Minaya Ramirez, D. Ackermann, K. Blaum, M. Block, C. Droese, Ch. E. Düllmann, M. Dworschak, M. Eibach, S. Eliseev, E. Haettner, F. Herfurth, F. P. Heßberger, S. Hofmann, J. Ketelaer, G. Marx, M. Mazzocco, D. Nesterenko, Yu. N. Novikov, W. R. Plaß, D. Rodríguez, C. Scheidenberger, L. Schweikhard, P. G. Thirolf, C. Weber

Direct Mapping of Nuclear Shell Effects in the Heaviest Elements

Science Express, 9. August 2012 ; Doi: 10.1126/science.1225636

Prof. Dr. Klaus Blaum | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6201973/schaleneffekt_superschwere_atomkerne

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise