Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Superrechenkraft für schnelle Elektronen

12.06.2012
Woher kommen die schnellsten Elektronen im Sonnenwind? Das versuchen Physiker der Universität Würzburg herauszufinden. Ein Expertengremium hat ihnen dafür jetzt 60 Millionen Stunden Rechenzeit auf dem derzeit schnellsten zivilen Computer in Europa zugebilligt.
Jede Sekunde schickt die Sonne rund eine Million Tonnen Materie ins Weltall. Vor allem kleine und leichte Teilchen sind darin vertreten wie Elektronen, Protonen und Alphateilchen. Unter der Bezeichnung „Sonnenwind“ breiten sie sich in alle Richtungen aus; einige von ihnen treffen nach kurzer Zeit auch auf die Erdatmosphäre.

„Die meisten dieser Teilchen strömen mit einer Geschwindigkeit von etwa 400 Kilometer pro Sekunde an der Erde vorbei. Allerdings haben Satellitenbeobachtungen gezeigt, dass etwa eins von einer Milliarde Teilchen eine wesentlich größere Geschwindigkeit aufweist, die mehr als das Hundertfache der üblichen betragen kann“, sagt Dr. Felix Spanier, wissenschaftlicher Mitarbeiter am Lehrstuhl für Astronomie der Universität Würzburg. Gemeinsam mit seinem Doktoranden Patrick Kilian will Spanier in den kommenden Monaten aufklären, woher dieser Geschwindigkeitsunterschied kommt. Ebenfalls an dem Projekt beteiligt sind der Informatiker Stefan Siegel und der Masterstudent Andreas Kempf.
Hermit, der Supercomputer

Wertvolle Unterstützung haben sie dafür jetzt von einer Gutachterkommission am Höchstleistungsrechenzentrum Stuttgart (HLRS) bekommen: Die Kommission hat der Gruppe um Felix Spanier 60 Millionen Stunden Rechenzeit auf „Hermit“, dem derzeit schnellsten zivilen Supercomputer in Europa, zur Verfügung gestellt. „Damit können wir hochaufgelöste Simulationen durchführen, die zeigen sollen, wie Elektronen so stark beschleunigt werden“, sagt Spanier.
Hermit wurde erst am 28. Februar dieses Jahres in Stuttgart in Betrieb genommen. Das von der Firma Cray gebaute System liefert mit seinen gut 7000 Prozessoren insgesamt etwas über ein Peta-Flops, erledigt also eine Million Milliarden Rechenschritte pro Sekunde.

„Wie beim Zugang zu anderen Großgeräten auch, wird die Rechenzeit nicht von der Universität eingekauft, sondern aufgrund von Anträgen bewilligt“, erklärt Patrick Kilian das Auswahlverfahren. Wissenschaftler, die den Rechner für ihre Forschung nutzen wollen, beschreiben ihr geplantes Projekt und begründen, wieso gerade ihnen Zugang gewährt werden soll. Die Anträge werden üblicherweise zweimal im Jahr gebündelt von Mitarbeitern des Rechenzentrums bewertet. Diese müssen klären, welche Projekte machbar und sinnvoll sind, und vergeben dementsprechend Rechenzeit.

Woher die schnellen Elektronen kommen

„Derzeit geht die Wissenschaft davon aus, dass diese schnellen Teilchen erzeugt werden, wenn die Sonne bei einer Eruption Masse auswirft und diese beim Auftreffen auf den Sonnenwind eine Schockfront ausbildet“, sagt Patrick Kilian. Die Details dieser Beschleunigung sind jedoch nicht vollständig bekannt, viele Fragen sind noch offen. Antworten sollen die Untersuchungen der Würzburger Physiker liefern.

„Wir arbeiten mit hochaufgelösten Simulationen, die das Verhalten von Milliarden von Elektronen und Protonen und die elektrischen und magnetischen Felder zwischen ihnen zeitlich und räumlich aufgelöst berechnen, erklärt Kilian. Weil Felder und Teilchen immer wechselseitig auf einander wirken, bräuchten die Wissenschaftler für ihre Berechnungen keine Annahmen über die Mikrophysik im Sonnenwind. Die komplexe Dynamik ergebe sich allein aus dem Wechselspiel der Bestandteile. „Mit der von uns verwendeten Simulationstechnik können wir sowohl den Weg als auch die Herkunft schneller Teilchen zurückverfolgen und so den Mechanismus der Teilchenbeschleunigung besser verstehen“, hofft Kilian.

Simulation statt Satellit

Und warum simulieren Physiker diese Prozesse höchst aufwändig auf superschnellen Rechnern, anstatt sie direkt vor Ort im Weltall zu beobachten? Ganz einfach: „Weil Satellitenmissionen enorm teuer und deshalb nur begrenzt machbar sind“, sagt Patrick Kilian. Und weil die Beschränkung der Messgeräte, die die Satelliten an Bord haben, die Untersuchung des Sonnenwinds an Ort und Stelle nicht unbedingt verbessern.

Kontakt
Dr. Felix Spanier, T (0931) 31-84932, fspanier@astro.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: Elektron Physik ProTon Rechner Simulation Sonnenwind Superrechenkraft Teilchen Weltall

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften