Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Supernovae in Form kommen

05.05.2010
Wissenschaftler am Max-Planck-Institut für Astrophysik in Garching gelang es erstmals, mit komplexen Computerberechnungen in allen drei Raumdimensionen nachzuvollziehen, wie bei Sternexplosionen die beobachteten Asymmetrien und schnellen, eisenreichen Klumpen entstehen. Dazu verfolgten sie in ihren Modellen das Sterben eines Sterns lückenlos vom Beginn der Explosion bis zum Ausbruch der Explosionswelle aus der Sternoberfläche mehrere Stunden später. (Astrophysical Journal, 10 May 2010)

Massereiche Sterne beenden ihr Leben in gigantischen Explosionen, so genannten Supernovae, und können dann – für kurze Zeit – heller leuchten als eine ganze Galaxie, die aus Milliarden von Sternen besteht. Obwohl Supernovae bereits seit Jahrzehnten mit Computermodellen theoretisch erforscht werden, sind die physikalischen Prozesse in ihrem Innern dermaßen komplex, dass die Astrophysiker bisher nur einen Teil dieser Vorgänge simulieren konnten, und das auch nur in ein oder zwei Dimensionen.

Wissenschaftler am Max-Planck-Institut für Astrophysik in Garching haben nun die ersten vollständigen, drei-dimensionalen Simulationen einer Kernkollaps-Supernova durchgeführt – und zwar von der Zündung der Explosion an über mehrere Stunden hinweg. Sie konnten so die Frage beantworten, wie sich anfängliche Asymmetrien, die tief im Innern des dichten Kerns in den sehr frühen Phasen der Explosion auftreten, zu Inhomogenitäten entfalten, die man während des Supernova-Ausbruchs beobachten kann.

Obwohl man diese Sternexplosionen aufgrund ihrer enormen Energien bis weit ins All beobachten kann, sind sie relativ selten. In einer Galaxie von der Größe unserer Milchstraße ereignet sich im Durchschnitt nur etwa eine Supernova in 50 Jahren. Vor gut 20 Jahren konnte man eine Supernova sogar mit bloßem Auge beobachten: SN 1987A im Tarantelnebel in der Großen Magellanschen Wolke, unserer Nachbargalaxie. Diese relative Nähe – eine Entfernung von „nur“ 170 000 Lichtjahren – erlaubte es den Astronomen, über Wochen und sogar Monate hinweg viele detaillierte Beobachtungsdaten in unterschiedlichen Wellenlängenbereichen zu sammeln. Es stellte sich heraus, dass es sich bei SN 1987A um eine Kernkollaps-Supernova handelt, eine so genannte Typ II Supernova. Diese entstehen, wenn ein massereicher Stern, der mindestens neunmal schwerer ist als die Sonne, fast sein gesamtes Brennmaterial verbraucht hat. Der Fusionsmotor im Innern des Sterns beginnt zu stottern, was einen Kollaps des Zentrums und damit eine gewaltige Explosion des gesamten Sterns auslöst. Bei SN 1987A war der Vorläuferstern bei seiner Geburt etwa 20-mal schwerer als die Sonne.

SN 1987A ist wahrscheinlich die am besten erforschte Supernova, und es ist für Astronomen immer noch eine große Herausforderung, Modelle zu entwickeln, die beschreiben, was in dem sterbenden Stern passiert, um die beobachtete Strahlung zu erklären. Einer der erstaunlichen und unerwarteten Befunde bei SN 1987A und vielen weiteren Supernovae war die Tatsache, dass Nickel und Eisen – schwere Elemente, die nahe des Zentrums der Explosion gebildet werden – in großen Klumpen nach außen transportiert werden, wo sie sich mit der Wasserstoffhülle des zerstörten Sterns vermischen. Beobachtungen zeigen, dass sich diese Nickel-Geschosse mit Geschwindigkeiten von Tausenden Kilometern in der Sekunde ausbreiten. Dies ist viel schneller als der umgebende Wasserstoff und viel schneller als von einfachen hydrodynamischen Berechnungen in einer Dimension (1D), die nur das radiale Profil vom Zentrum nach außen betrachten, vorhergesagt.

In der Tat stellte sich heraus, dass die Helligkeitsentwicklung (die so genannte Lichtkurve) von SN 1987A und ähnlichen Kernkollaps-Supernovae nur erklärt werden kann, wenn große Mengen des schweren Kernmaterials (insbesondere radioaktives Nickel) nach außen transportiert und mit der Sternhülle vermischt werden, und leichte Elemente (Wasserstoff und Helium aus der Hülle) nach innen zum Kern wandern.

Es ist sehr schwierig, die Details der Supernovaexplosionen zu simulieren, nicht nur aufgrund der Komplexität der physikalischen Prozesse sondern auch aufgrund der Dauer und der sehr unterschiedlichen Größenskalen, die schlussendlich in drei-dimensionalen (3D) Computermodellen aufgelöst werden müssen – von einigen hundert Metern nahe des Zentrums bis zu vielen Millionen Kilometern nahe der Sternoberfläche. Bisherige Simulationen in zwei Dimensionen (2D, d.h. Axialsymmetrie wurde vorausgesetzt) zeigten zwar, dass die kugelförmige Schalenstruktur des Vorgängersterns bei der Supernovaexplosion zerstört wird und dass eine Vermischung auf großen Skalen stattfindet. Die reale Welt ist aber drei-dimensional und nicht alle beobachteten Aspekte konnten mit den 2D-Modellen reproduziert werden.

Die neuen Computermodelle des Teams am Max-Planck-Institut für Astrophysik simulieren nun zum ersten Mal den vollständigen Ausbruch in allen drei Dimensionen, von den ersten tausendstel Sekunden nach dem Auslösen der Explosion im Kern bis zu dem Zeitpunkt drei Stunden später, wenn die Stoßwelle aus dem Vorläuferstern hervorbricht. „Wir fanden in unseren 3D-Modellen erhebliche Abweichungen im Vergleich zu vorherigen 2D-Studien“, sagt Nicolay Hammer, Erstautor des Artikels, „insbesondere das Wachstum von Instabilitäten und die Ausbreitung der Klumpen ist anders. Diese Abweichungen sind keineswegs geringfügig; dieser Effekt legt die langfristige Entwicklung und letztlich das Ausmaß der Vermischung und das beobachtbare Aussehen der Kernkollaps-Supernova fest.“

In den 3D-Simulationen haben die metallreichen Klumpen deutlich höhere Geschwindigkeiten als bei 2D-Modellen. Diese „Geschosse“ breiten sich viel schneller aus und überholen Material aus den äußeren Schichten. „Mit einem einfachen analytischen Modell konnten wir zeigen, dass die unterschiedliche Geometrie der Geschosse, ringförmig gegenüber quasi kugelförmig, die in unseren Simulationen beobachteten Unterschiede erklären kann“, sagt Mitautor Thomas Janka. „Wir glauben zwar, dass die Unterschiede zwischen den 2D- und 3D-Modellen, die wir gefunden haben, allgemeingültig sind, viele Merkmale werden aber stark von der Struktur des Vorläufersterns, der Gesamtenergie und der anfänglichen Asymmetie der Explosion abhängen.“

„Wir hoffen, durch unsere Modelle im Vergleich mit Beobachtungen herauszufinden, wie die Sternexplosion beginnt und was sie auslöst“, fügt der dritte Autor, Ewald Müller, hinzu. In zukünftigen Simulationen werden die Wissenschaftler deshalb eine größere Bandbreite an Vorläufersternen und Anfangsbedingungen untersuchen. Insbesondere bleibt die Herausforderung bestehen, ein Modell zu finden, dass alle beobachteten Charakteristika von SN 1987A reproduziert.

Originalveröffentlichung

N.J. Hammer, H.-Th. Janka, E. Müller, Three-dimensional simulations of mixing instabilities in supernova explosions, Astrophysical Journal 714 (2010) 1371-1385

Dr. Hannelore Hämmerle | Max-Planck-Institut
Weitere Informationen:
http://www.mpa-garching.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

nachricht Rotierende Rugbybälle unter den massereichsten Galaxien
23.05.2018 | Leibniz-Institut für Astrophysik Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Ansatz im Kampf gegen Prostatakrebs entdeckt

24.05.2018 | Medizin Gesundheit

Konventionelle Antibiotika-Therapie ergänzen

24.05.2018 | Biowissenschaften Chemie

Vom Stroh zum Energieträger: Eintopf-Rezept für Wasserstoffgewinnung

24.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics