Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Supernovae in Form kommen

05.05.2010
Wissenschaftler am Max-Planck-Institut für Astrophysik in Garching gelang es erstmals, mit komplexen Computerberechnungen in allen drei Raumdimensionen nachzuvollziehen, wie bei Sternexplosionen die beobachteten Asymmetrien und schnellen, eisenreichen Klumpen entstehen. Dazu verfolgten sie in ihren Modellen das Sterben eines Sterns lückenlos vom Beginn der Explosion bis zum Ausbruch der Explosionswelle aus der Sternoberfläche mehrere Stunden später. (Astrophysical Journal, 10 May 2010)

Massereiche Sterne beenden ihr Leben in gigantischen Explosionen, so genannten Supernovae, und können dann – für kurze Zeit – heller leuchten als eine ganze Galaxie, die aus Milliarden von Sternen besteht. Obwohl Supernovae bereits seit Jahrzehnten mit Computermodellen theoretisch erforscht werden, sind die physikalischen Prozesse in ihrem Innern dermaßen komplex, dass die Astrophysiker bisher nur einen Teil dieser Vorgänge simulieren konnten, und das auch nur in ein oder zwei Dimensionen.

Wissenschaftler am Max-Planck-Institut für Astrophysik in Garching haben nun die ersten vollständigen, drei-dimensionalen Simulationen einer Kernkollaps-Supernova durchgeführt – und zwar von der Zündung der Explosion an über mehrere Stunden hinweg. Sie konnten so die Frage beantworten, wie sich anfängliche Asymmetrien, die tief im Innern des dichten Kerns in den sehr frühen Phasen der Explosion auftreten, zu Inhomogenitäten entfalten, die man während des Supernova-Ausbruchs beobachten kann.

Obwohl man diese Sternexplosionen aufgrund ihrer enormen Energien bis weit ins All beobachten kann, sind sie relativ selten. In einer Galaxie von der Größe unserer Milchstraße ereignet sich im Durchschnitt nur etwa eine Supernova in 50 Jahren. Vor gut 20 Jahren konnte man eine Supernova sogar mit bloßem Auge beobachten: SN 1987A im Tarantelnebel in der Großen Magellanschen Wolke, unserer Nachbargalaxie. Diese relative Nähe – eine Entfernung von „nur“ 170 000 Lichtjahren – erlaubte es den Astronomen, über Wochen und sogar Monate hinweg viele detaillierte Beobachtungsdaten in unterschiedlichen Wellenlängenbereichen zu sammeln. Es stellte sich heraus, dass es sich bei SN 1987A um eine Kernkollaps-Supernova handelt, eine so genannte Typ II Supernova. Diese entstehen, wenn ein massereicher Stern, der mindestens neunmal schwerer ist als die Sonne, fast sein gesamtes Brennmaterial verbraucht hat. Der Fusionsmotor im Innern des Sterns beginnt zu stottern, was einen Kollaps des Zentrums und damit eine gewaltige Explosion des gesamten Sterns auslöst. Bei SN 1987A war der Vorläuferstern bei seiner Geburt etwa 20-mal schwerer als die Sonne.

SN 1987A ist wahrscheinlich die am besten erforschte Supernova, und es ist für Astronomen immer noch eine große Herausforderung, Modelle zu entwickeln, die beschreiben, was in dem sterbenden Stern passiert, um die beobachtete Strahlung zu erklären. Einer der erstaunlichen und unerwarteten Befunde bei SN 1987A und vielen weiteren Supernovae war die Tatsache, dass Nickel und Eisen – schwere Elemente, die nahe des Zentrums der Explosion gebildet werden – in großen Klumpen nach außen transportiert werden, wo sie sich mit der Wasserstoffhülle des zerstörten Sterns vermischen. Beobachtungen zeigen, dass sich diese Nickel-Geschosse mit Geschwindigkeiten von Tausenden Kilometern in der Sekunde ausbreiten. Dies ist viel schneller als der umgebende Wasserstoff und viel schneller als von einfachen hydrodynamischen Berechnungen in einer Dimension (1D), die nur das radiale Profil vom Zentrum nach außen betrachten, vorhergesagt.

In der Tat stellte sich heraus, dass die Helligkeitsentwicklung (die so genannte Lichtkurve) von SN 1987A und ähnlichen Kernkollaps-Supernovae nur erklärt werden kann, wenn große Mengen des schweren Kernmaterials (insbesondere radioaktives Nickel) nach außen transportiert und mit der Sternhülle vermischt werden, und leichte Elemente (Wasserstoff und Helium aus der Hülle) nach innen zum Kern wandern.

Es ist sehr schwierig, die Details der Supernovaexplosionen zu simulieren, nicht nur aufgrund der Komplexität der physikalischen Prozesse sondern auch aufgrund der Dauer und der sehr unterschiedlichen Größenskalen, die schlussendlich in drei-dimensionalen (3D) Computermodellen aufgelöst werden müssen – von einigen hundert Metern nahe des Zentrums bis zu vielen Millionen Kilometern nahe der Sternoberfläche. Bisherige Simulationen in zwei Dimensionen (2D, d.h. Axialsymmetrie wurde vorausgesetzt) zeigten zwar, dass die kugelförmige Schalenstruktur des Vorgängersterns bei der Supernovaexplosion zerstört wird und dass eine Vermischung auf großen Skalen stattfindet. Die reale Welt ist aber drei-dimensional und nicht alle beobachteten Aspekte konnten mit den 2D-Modellen reproduziert werden.

Die neuen Computermodelle des Teams am Max-Planck-Institut für Astrophysik simulieren nun zum ersten Mal den vollständigen Ausbruch in allen drei Dimensionen, von den ersten tausendstel Sekunden nach dem Auslösen der Explosion im Kern bis zu dem Zeitpunkt drei Stunden später, wenn die Stoßwelle aus dem Vorläuferstern hervorbricht. „Wir fanden in unseren 3D-Modellen erhebliche Abweichungen im Vergleich zu vorherigen 2D-Studien“, sagt Nicolay Hammer, Erstautor des Artikels, „insbesondere das Wachstum von Instabilitäten und die Ausbreitung der Klumpen ist anders. Diese Abweichungen sind keineswegs geringfügig; dieser Effekt legt die langfristige Entwicklung und letztlich das Ausmaß der Vermischung und das beobachtbare Aussehen der Kernkollaps-Supernova fest.“

In den 3D-Simulationen haben die metallreichen Klumpen deutlich höhere Geschwindigkeiten als bei 2D-Modellen. Diese „Geschosse“ breiten sich viel schneller aus und überholen Material aus den äußeren Schichten. „Mit einem einfachen analytischen Modell konnten wir zeigen, dass die unterschiedliche Geometrie der Geschosse, ringförmig gegenüber quasi kugelförmig, die in unseren Simulationen beobachteten Unterschiede erklären kann“, sagt Mitautor Thomas Janka. „Wir glauben zwar, dass die Unterschiede zwischen den 2D- und 3D-Modellen, die wir gefunden haben, allgemeingültig sind, viele Merkmale werden aber stark von der Struktur des Vorläufersterns, der Gesamtenergie und der anfänglichen Asymmetie der Explosion abhängen.“

„Wir hoffen, durch unsere Modelle im Vergleich mit Beobachtungen herauszufinden, wie die Sternexplosion beginnt und was sie auslöst“, fügt der dritte Autor, Ewald Müller, hinzu. In zukünftigen Simulationen werden die Wissenschaftler deshalb eine größere Bandbreite an Vorläufersternen und Anfangsbedingungen untersuchen. Insbesondere bleibt die Herausforderung bestehen, ein Modell zu finden, dass alle beobachteten Charakteristika von SN 1987A reproduziert.

Originalveröffentlichung

N.J. Hammer, H.-Th. Janka, E. Müller, Three-dimensional simulations of mixing instabilities in supernova explosions, Astrophysical Journal 714 (2010) 1371-1385

Dr. Hannelore Hämmerle | Max-Planck-Institut
Weitere Informationen:
http://www.mpa-garching.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie