Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supernova-Eisen auch auf dem Mond gefunden

14.04.2016

Bestätigung für Sternenexplosion in der Nähe unseres Sonnensystems

Vor rund zwei Millionen Jahren gab es eine Sternenexplosion, eine Supernova in der Nähe unseres Sonnensystems. Davon zeugen heute noch Spuren eines bestimmten Eisen-Isotops in Meeresablagerungen. Nun konnten Wissenschaftler der Technischen Universität München (TUM) gemeinsam mit Kollegen aus den USA auch in Bodenproben des Mondes eine ungewöhnlich hohe Konzentrationen dieses Supernova-Eisens nachweisen. Sie nehmen an, dass beide Funde vom selben Sternausbruch stammen.


Apollo 12-Astronaut Alan L. Bean bei der Probennahme auf der Mondoberfläche - Bild: NASA

Ein sterbender Stern beendet sein Leben mit einer gewaltigen Explosion. Einen großen Teil seiner Materie, vor allem die während der Explosion neu entstandenen chemischen Elemente, schleudert er dabei ins Weltall.

Eine oder mehrere solcher Supernovae müssen sich vor rund zwei Millionen Jahren in der Nähe des Sonnensystems ereignet haben. Darauf deutete bereits auf der Erde die erhöhte Konzentration des Eisen-Isotops Fe-60 hin, das in einer Tiefseekruste des Pazifischen Ozeans und auch in Meeressedimenten gefunden wurde.

Die Indizien sind stark: Das radioaktive Fe-60 entsteht fast ausschließlich in Sternenexplosionen. Und weil seine Halbwertszeit von 2,62 Millionen Jahren im Vergleich zum Alter unseres Sonnensystems kurz ist, sollte radioaktives Fe-60 aus der Zeit der Bildung des Sonnensystems auf der Erde längst in stabile Elemente zerfallen und damit nicht mehr vorhanden sein.

Mondproben von den Apollo-Missionen

Nun erhält diese Supernova-Hypothese, zu der erstmalig im Jahr 1999 von Forschern der Technischen Universität München (TUM) Hinweise in einer Tiefseekruste gefunden wurden, weitere Bestätigung: Physiker der TUM und Kollegen aus den USA konnten auch in Bodenproben des Mondes eine ungewöhnlich hohe Ansammlung von Fe-60 nachweisen.

Die Proben stammen von den Flügen der Apollo-Missionen 12, 15 und 16, die zwischen 1969 und 1972 auf dem Mond gelandet waren und von dort Material zur Erde gebracht hatten.

Zwar kann Fe-60 auf dem Mond auch durch das Bombardement mit kosmischen Teilchen entstehen, denn diese Teilchen zerschellen nicht wie auf der Erde an den Luftmolekülen der Atmosphäre, sondern prasseln direkt auf die Mondoberfläche und können so zur Spaltung von Elementen führen. „Aber diese Quelle kann nur einen sehr kleinen Anteil des Vorkommens an Fe-60 erklären“, erklärt Dr. Gunther Korschinek von der TUM, der auch Wissenschaftler des Exzellenzclusters Universe ist.

Ablagerung von frisch produziertem Sternenmaterial

„Wir gehen daher davon aus, dass das Fe-60 in beiden Funden, Mond und Erde, denselben Ursprung hat: es handelt sich um die Ablagerungen von frisch erzeugtem Sternenmaterial, das in einer oder mehreren Supernovae produziert wurde“, sagt Korschinek.

Weil der Mond ein besseres kosmisches Archiv als die Erde darstellt, konnten die Wissenschaftler auch erstmals eine Obergrenze für den Fluss an Fe-60 angeben, der den Mond erreicht haben muss. Daraus können die Forscher unter anderem auf die damalige Entfernung zum Supernova-Ereignis schließen: „Der gemessene Fe-60 Fluss entspricht einer Supernova in einem Abstand von etwa 300 Lichtjahren“, sagt Korschinek. „Dieser Wert stimmt gut überein mit einer kürzlich in Nature publizierten theoretischen Abschätzung.“

Die Proben des Mondes wurden am hochempfindlichen Beschleuniger-Massenspektrometer des Maier-Leibnitz-Laboratoriums in Garching untersucht. Neben den Physikern der TUM waren an der Veröffentlichung auch Wissenschaftler der Rutgers University, USA, und des Planetary Science Institute in Los Alamos, USA, beteiligt. Finanziell wurde die Arbeit durch die Deutsche Forschungsgemeinschaft über den Exzellenzcluster Universe unterstützt.

Publikation
Interstellar 60Fe on the surface of the Moon
L. Fimiani, D. L. Cook, T. Faestermann, J. M. Gomez-Guzman, K. Hain, G. Herzog, K. Knie, G. Korschinek, P. Ludwig, J. Park, R. C. Reedy, and G. Rugel
Phys. Rev. Lett. 116, 151104, 13. April 2016 (online) – DOI: 10.1103/PhysRevLett.116.151104

Kontakt:
Dr. Gunther Korschinek
Technische Universität München
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289-14257
E-Mail: korschin@tum.de

Dr. Thomas Faestermann
Technische Universität München
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289-12438
E-Mail: thomas.faestermann@mytum.de

Pressekontakt:
Petra Riedel
Exzellenzcluster Universe
Technische Universität München
Boltzmannstr. 2
85748 München
Tel.: +49 89 35831-7105
E-Mail: petra.riedel@universe-cluster.de

Weitere Informationen:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.151104
http://www.gams.ph.tum.de
http://www.tum.de
http://www.universe-cluster.de

Petra Riedel | Technische Universität München

Weitere Berichte zu: Apollo-Missionen Supernova Supernovae TUM Technische Universität

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise