Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supercomputer-Rekordjagd an Wiener Universitäten

19.04.2010
Der Vienna Scientifc Cluster (VSC), gemeinsamer Hochleistungsrechner von TU Wien, Universität Wien und Universität für Bodenkultur (BOKU) ist ein Erfolgsprojekt. Seine Rechenpower ist unter WissenschafterInnen heiß begehrt.

Groß waren die Erwartungen, die in den neuen Supercomputer Vienna Scientific Cluster (VSC) von TU Wien, Universität Wien und BOKU gesetzt wurden, als man ihn im November 2009 feierlich eröffnete. Nach einigen Monaten im Dauereinsatz sind WissenschafterInnen und ComputertechnikerInnen voll zufrieden: Der VSC ist ein großer Erfolg, die hohen Erwartungen konnten erfüllt werden und er erweist sich als eine wichtige Stärkung des Wissenschaftsstandortes Wien.

Gleich drei Universitäten teilen sich den Supercomputer: Neben der TU Wien, an der der Rechner beherbergt ist, sind auch die Universität Wien und die Universität für Bodenkultur am Vienna Scientific Cluster (VSC) beteiligt. Durch diese Kooperation war es möglich, einen Supercomputer von internationalem Rang aufzubauen. Der VSC ist der schnellste Rechner Österreichs und gehört zu den 200 leistungsfähigsten Computern der Welt.

Ferrari fahren zu Forschungszwecken

Für die Forscherinnen und Forscher, die den VSC verwenden, sind aber weniger die technischen Daten des Computerclusters von Bedeutung, als vielmehr die Rechenpower, die sie am neuen Rechner tatsächlich nützen können. Auch ein Rennwagen bringt schließlich wenig, wenn alle gleichzeitig fahren wollen und jeder im Stau feststeckt. Die Verteilung der Rechenkapazitäten an die einzelnen Forschungsgruppen der drei Universitäten läuft allerdings problemlos: "Der VSC ist gut ausgelastet, aber nicht überlastet" bestätigt Dr. Jan Zabloudil, der den Supercomputer als Systemadministrator technisch betreut.

Unverzichtbares Arbeitsgerät

Auch unter den WissenschafterInnen herrscht volle Zufriedenheit mit dem VSC: "Für uns ist der neue Supercomputer ein unverzichtbares Arbeitsgerät geworden", erklärt Prof. Anton Rebhan vom Institut für Theoretische Physik der TU Wien. Er leitet eines der derzeit rechenintensivsten Forschungsprojekte am VSC. Gemeinsam mit seinem Assistenten Andreas Ipp erforscht er das Verhalten subatomarer Teilchen bei Schwerionenkollisionen, wie sie demnächst am Large Hadron Collider (LHC) des CERN in Genf durchgeführt werden sollen. "Die Rechenleistung des VSC ermöglicht uns, diese sehr aufwändigen Simulationen besser und exakter durchzuführen, als das bisher machbar war - dadurch gibt es natürlich international großes Interesse an unseren Rechenergebnissen", meint Andreas Ipp. Für eine breite Palette von wissenschaftlichen Fragestellungen wird der VSC derzeit eingesetzt. Das Anwendungsgebiet reicht von Quantenphysik bis zur Astronomie, von Materialwissenschaften bis hin zu Biochemie.

Zahlen und Fakten

Der Hochleistungsrechner besteht aus 436 Rechnerknoten mit insgesamt 3.488 Prozessorkernen. Für wissenschaftliche Simulationsrechnungen, bei denen oft viele verschiedene Prozessoren gleichzeitig arbeiten müssen, ist er damit bestens ausgerüstet. Insgesamt kommt der VSC auf eine Rechenleistung von über 35 Teraflops. Ein Teraflop bedeutet eine Billion Rechenoperationen pro Sekunde. Zum Vergleich: Ein Pentium-4-Prozessor mit 3 Gigahertz schafft gerade mal 0,006 Teraflops. In dem winzigen Sekundenbruchteil, den ein Düsenjet benötigt, um die Strecke von einem Millimeter zurückzulegen, kann der neue Hochleistungsrechner über hundert Millionen Zahlen addieren. Auch wenn der VSC bisher den Anforderungen voll gerecht wird, könnte er sogar noch weiter ausgebaut werden.

Rückfragehinweis:
Technische Universität Wien
Zentraler Informatikdienst (ZID)
Systemadministration VSC
Ing. Peter Berger
T: +43 (1) 58801 - 420 70
peter.berger@tuwien.ac.at
Aussender:
Technische Universität Wien
Büro für Öffentlichkeitsarbeit
DI Florian Aigner
T: +43 (1) 58801 - 13633
pr@tuwien.ac.at

Werner Sommer | idw
Weitere Informationen:
http://www.tuwien.ac.at/pr
http://www.tuwien.ac.at/index.php?id=10173
http://www.vsc.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops