Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supercomputer nach dem Baukastenprinzip

03.07.2017

Entwicklung eines modularen Superrechners geht mit DEEP-EST in die nächste Runde

Einen neuartigen modularen Supercomputer schaffen, der auf die Komplexität moderner Simulationscodes und das wachsende Aufgabenspektrum von Rechenzentren zugeschnitten ist. Das ist das Ziel des EU-Projekts DEEP-EST, das am 1. Juli 2017 startete. Bis 2020 soll ein Prototyp entstehen, der nach dem Baukastenprinzip unterschiedliche Rechenmodule kombiniert.


Schema: Aufbau der modularen Supercomputer-Architektur

Copyright: Forschungszentrum Jülich

DEEP-EST folgt auf die erfolgreich abgeschlossenen Projekte DEEP und DEEP-ER und sieht unter anderem ein zusätzliches neues Modul für die Analyse großer Datenmengen vor. An dem vom Forschungszentrum Jülich koordinierten Projekt sind 16 international führende Forschungseinrichtungen und Unternehmen beteiligt.

Für Smartphones und Notebooks zählt längst nicht mehr nur die reine Rechenleistung. Ebenso wichtig sind Kameras, Netzwerkschnittstellen und GPS. Ein ähnlicher Trend ist auf dem Gebiet des High-Performance Computing (HPC) zu beobachten. Neben rechenintensive Simulationen – das traditionelle Aufgabengebiet wissenschaftlicher Rechenzentren – treten neue Anwendungen wie Big-Data-Analysen und aufwendige Visualisierungen, die sich mit herkömmlichen Superrechner-Architekturen nur ineffizient bewältigen lassen.

„Die Optimierung homogener Systeme ist mehr oder weniger ausgereizt. Wir entwickeln Schritt für Schritt die Voraussetzungen für eine hocheffiziente modulare Superrechner-Architektur, die sich flexibel an unterschiedliche Anforderungen wissenschaftlicher Anwendungen anpasst“, erklärt Prof. Thomas Lippert, Leiter des Jülich Supercomputing Centre (JSC).

Beschleuniger oder Speichermodule werden nach dem Konzept des modularen Superrechners nicht wie bisher über Erweiterungskarten mit einzelnen CPUs kombiniert, sondern zu eigenständigen Modulen zusammengefasst. Deren Einheiten, genannt Knoten, lassen sich je nach Bedarf kombinieren. Am Ende steht ein flexibel anpassbares System, das mittels zukunftsweisender Technologien die Grundlage schaffen soll für sogenannte Exascale-Rechner: zukünftige Supercomputer, deren Leistungsfähigkeit die der schnellsten heutigen Supercomputer um eine Größenordnung übersteigt.

Neues Modul für Big Data

Bis 2020 wird in DEEP-EST ein Prototyp entwickelt, der die Vorzüge des Konzepts unter Beweis stellen soll. Neu hinzukommen wird unter anderem ein Data-Analytics-Modul für die Analyse großer Datenmengen, das die Cluster-Booster-Architektur der Vorgängerprojekte DEEP und DEEP-ER noch erweitert. Mit einer hohen Speicherkapazität und flexibel programmierbaren Prozessoren, sogenannten FPGAs, soll das Data-Analytics-Modul eine Lücke schließen, die sich aus unterschiedlichen Hardware-Anforderungen für das High-Performance Computing (HPC) und High-Performance Data Analytics (HPDA) entwickelt hat.

„Bei klassischen Supercomputing-Anwendungen wie etwa Simulationen aus der Quantenphysik werden extrem viele Rechenoperationen auf einen relativ kleinen Datensatz angewendet. Das erfordert Systeme mit viel Rechenpower, aber nur relativ wenig Speicher“, erklärt Projektleiterin Dr. Estela Suárez vom Jülich Supercomputing Centre (JSC). „Wir sehen aber schon jetzt, dass die Anwendungen deutlich komplexer und die Datenmengen von heutigen Experimenten, etwa am CERN, immer größer werden. Das bedeutet: Supercomputer brauchen künftig eine drastisch höhere Speicherkapazität – und zwar so nah wie möglich an den Prozessoren. Nur so lassen sich die Daten schnell und möglichst energieeffizient bearbeiten“, erläutert Estela Suárez.

Anwendungen stehen Pate bei Entwicklung

Insgesamt sechs Anwendungen aus relevanten europäischen Forschungsfeldern werden bei der Entwicklung des Prototypen im Co-Design-Verfahren mit einbezogen. Die Anforderungen der Codes fließen in das Design des Prototypen mit ein. Zugleich profitieren die Codes durch Optimierungen im Zuge des Projekts. Die Forscher wollen zum Beispiel mit der KU Leuven einen Code adaptieren, mit dem sich simulieren lässt, wie sich gewaltige Sonnenstürme auf die Erde auswirken. Solche Ereignisse sind zwar selten, drohen aber mit gewaltigen Schäden: etwa dem Ausfall der Satellitenkommunikation und gestörten GPS-, Internet- und Telefonverbindungen.

Tests werden zeigen, inwiefern die hochkomplexe Simulation des Weltraumwetters von der modularen Rechner-Architektur profitiert. Verschiedene Teile des komplexen wissenschaftlichen Codes werden hierzu unterschiedlichen Modulen zugeordnet. Für die bestmögliche Verteilung sorgt die Systemsoftwareumgebung, die es ebenfalls im Projekt zu entwickeln gilt. Über ein ausgeklügeltes Ressourcenmanagement soll zudem sichergestellt werden, dass die verschiedenen Komponenten der Architektur zu jedem Zeitpunkt möglichst effizient genutzt werden und somit Energie gespart wird.

Im Fall der Weltraumwetter-Simulation ist etwa die datenintensive Auswertung von hochauflösenden Satellitenbildern insbesondere für die Auslagerung auf das Data-Analytics-Modul prädestiniert. Andere Teile des Simulationscodes, beispielsweise die Wechselwirkung der von der Sonne ausgestrahlten Teilchen mit dem Erdmagnetfeld, werden dagegen auf das Cluster-Modul mit leistungsfähigen General-Purpose-Prozessoren und den Booster aufgeteilt, der auf vernetzten, hochparallelen Mehrkernprozessoren basiert.

Projektpartner DEEP-EST

Forschungszentrum Jülich
Intel Deutschland GmbH
Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften
Barcelona Supercomputing Center
Megware Computer Vertrieb und Service GmbH
Ruprecht-Karls-Universität Heidelberg
EXTOLL GmbH
The University of Edinburgh
Fraunhofer Institut für Techno- und Wirtschaftsmathematik
Katholieke Universiteit Leuven
Stichting Astron, Netherlands Institute For Radio Astronomy
National Center For Supercomputing Applications
Norges Miljo-Og Biovitenskaplige Universitet
Haskoli Islands
European Organisation for Nuclear Research (CERN)
ParTec Cluster Competence Center GmbH

Weitere Informationen:

DEEP Projekte
Jülich Supercomputing Centre (JSC)
Pressemitteilung vom 16. Mai 2017: „Das DEEP-ER-Forschungsprojekt setzt Technologietrends für die nächste Generation von Supercomputern“
Pressemitteilung vom 28. April 2017: „Auf dem Weg zum modularen Superrechner der nächsten Generation“Ansprechpartner:

Prof. Dr. Dr. Thomas Lippert
Direktor am Institute for Advanced Simulation, Leiter des Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich
Tel. +49 2461 61-6402
E-mail: th.lippert@fz-juelich.de

Dr. Estela Suarez
Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich
Tel. +49 2461 61-9110
E-mail: e.suarez@fz-juelich.de

Pressekontakt:

Tobias Schlößer
Pressereferent, Forschungszentrum Jülich
Tel. +49 2461 61-4771
E-Mail: t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich GmbH
Weitere Informationen:
http://fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie

Kleinste Teilchen aus fernen Galaxien!

22.09.2017 | Physik Astronomie

Physik-Didaktiker aus Münster entwickeln Lehrmaterial zu Quantenphänomenen

22.09.2017 | Bildung Wissenschaft