Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supercomputer nach dem Baukastenprinzip

03.07.2017

Entwicklung eines modularen Superrechners geht mit DEEP-EST in die nächste Runde

Einen neuartigen modularen Supercomputer schaffen, der auf die Komplexität moderner Simulationscodes und das wachsende Aufgabenspektrum von Rechenzentren zugeschnitten ist. Das ist das Ziel des EU-Projekts DEEP-EST, das am 1. Juli 2017 startete. Bis 2020 soll ein Prototyp entstehen, der nach dem Baukastenprinzip unterschiedliche Rechenmodule kombiniert.


Schema: Aufbau der modularen Supercomputer-Architektur

Copyright: Forschungszentrum Jülich

DEEP-EST folgt auf die erfolgreich abgeschlossenen Projekte DEEP und DEEP-ER und sieht unter anderem ein zusätzliches neues Modul für die Analyse großer Datenmengen vor. An dem vom Forschungszentrum Jülich koordinierten Projekt sind 16 international führende Forschungseinrichtungen und Unternehmen beteiligt.

Für Smartphones und Notebooks zählt längst nicht mehr nur die reine Rechenleistung. Ebenso wichtig sind Kameras, Netzwerkschnittstellen und GPS. Ein ähnlicher Trend ist auf dem Gebiet des High-Performance Computing (HPC) zu beobachten. Neben rechenintensive Simulationen – das traditionelle Aufgabengebiet wissenschaftlicher Rechenzentren – treten neue Anwendungen wie Big-Data-Analysen und aufwendige Visualisierungen, die sich mit herkömmlichen Superrechner-Architekturen nur ineffizient bewältigen lassen.

„Die Optimierung homogener Systeme ist mehr oder weniger ausgereizt. Wir entwickeln Schritt für Schritt die Voraussetzungen für eine hocheffiziente modulare Superrechner-Architektur, die sich flexibel an unterschiedliche Anforderungen wissenschaftlicher Anwendungen anpasst“, erklärt Prof. Thomas Lippert, Leiter des Jülich Supercomputing Centre (JSC).

Beschleuniger oder Speichermodule werden nach dem Konzept des modularen Superrechners nicht wie bisher über Erweiterungskarten mit einzelnen CPUs kombiniert, sondern zu eigenständigen Modulen zusammengefasst. Deren Einheiten, genannt Knoten, lassen sich je nach Bedarf kombinieren. Am Ende steht ein flexibel anpassbares System, das mittels zukunftsweisender Technologien die Grundlage schaffen soll für sogenannte Exascale-Rechner: zukünftige Supercomputer, deren Leistungsfähigkeit die der schnellsten heutigen Supercomputer um eine Größenordnung übersteigt.

Neues Modul für Big Data

Bis 2020 wird in DEEP-EST ein Prototyp entwickelt, der die Vorzüge des Konzepts unter Beweis stellen soll. Neu hinzukommen wird unter anderem ein Data-Analytics-Modul für die Analyse großer Datenmengen, das die Cluster-Booster-Architektur der Vorgängerprojekte DEEP und DEEP-ER noch erweitert. Mit einer hohen Speicherkapazität und flexibel programmierbaren Prozessoren, sogenannten FPGAs, soll das Data-Analytics-Modul eine Lücke schließen, die sich aus unterschiedlichen Hardware-Anforderungen für das High-Performance Computing (HPC) und High-Performance Data Analytics (HPDA) entwickelt hat.

„Bei klassischen Supercomputing-Anwendungen wie etwa Simulationen aus der Quantenphysik werden extrem viele Rechenoperationen auf einen relativ kleinen Datensatz angewendet. Das erfordert Systeme mit viel Rechenpower, aber nur relativ wenig Speicher“, erklärt Projektleiterin Dr. Estela Suárez vom Jülich Supercomputing Centre (JSC). „Wir sehen aber schon jetzt, dass die Anwendungen deutlich komplexer und die Datenmengen von heutigen Experimenten, etwa am CERN, immer größer werden. Das bedeutet: Supercomputer brauchen künftig eine drastisch höhere Speicherkapazität – und zwar so nah wie möglich an den Prozessoren. Nur so lassen sich die Daten schnell und möglichst energieeffizient bearbeiten“, erläutert Estela Suárez.

Anwendungen stehen Pate bei Entwicklung

Insgesamt sechs Anwendungen aus relevanten europäischen Forschungsfeldern werden bei der Entwicklung des Prototypen im Co-Design-Verfahren mit einbezogen. Die Anforderungen der Codes fließen in das Design des Prototypen mit ein. Zugleich profitieren die Codes durch Optimierungen im Zuge des Projekts. Die Forscher wollen zum Beispiel mit der KU Leuven einen Code adaptieren, mit dem sich simulieren lässt, wie sich gewaltige Sonnenstürme auf die Erde auswirken. Solche Ereignisse sind zwar selten, drohen aber mit gewaltigen Schäden: etwa dem Ausfall der Satellitenkommunikation und gestörten GPS-, Internet- und Telefonverbindungen.

Tests werden zeigen, inwiefern die hochkomplexe Simulation des Weltraumwetters von der modularen Rechner-Architektur profitiert. Verschiedene Teile des komplexen wissenschaftlichen Codes werden hierzu unterschiedlichen Modulen zugeordnet. Für die bestmögliche Verteilung sorgt die Systemsoftwareumgebung, die es ebenfalls im Projekt zu entwickeln gilt. Über ein ausgeklügeltes Ressourcenmanagement soll zudem sichergestellt werden, dass die verschiedenen Komponenten der Architektur zu jedem Zeitpunkt möglichst effizient genutzt werden und somit Energie gespart wird.

Im Fall der Weltraumwetter-Simulation ist etwa die datenintensive Auswertung von hochauflösenden Satellitenbildern insbesondere für die Auslagerung auf das Data-Analytics-Modul prädestiniert. Andere Teile des Simulationscodes, beispielsweise die Wechselwirkung der von der Sonne ausgestrahlten Teilchen mit dem Erdmagnetfeld, werden dagegen auf das Cluster-Modul mit leistungsfähigen General-Purpose-Prozessoren und den Booster aufgeteilt, der auf vernetzten, hochparallelen Mehrkernprozessoren basiert.

Projektpartner DEEP-EST

Forschungszentrum Jülich
Intel Deutschland GmbH
Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften
Barcelona Supercomputing Center
Megware Computer Vertrieb und Service GmbH
Ruprecht-Karls-Universität Heidelberg
EXTOLL GmbH
The University of Edinburgh
Fraunhofer Institut für Techno- und Wirtschaftsmathematik
Katholieke Universiteit Leuven
Stichting Astron, Netherlands Institute For Radio Astronomy
National Center For Supercomputing Applications
Norges Miljo-Og Biovitenskaplige Universitet
Haskoli Islands
European Organisation for Nuclear Research (CERN)
ParTec Cluster Competence Center GmbH

Weitere Informationen:

DEEP Projekte
Jülich Supercomputing Centre (JSC)
Pressemitteilung vom 16. Mai 2017: „Das DEEP-ER-Forschungsprojekt setzt Technologietrends für die nächste Generation von Supercomputern“
Pressemitteilung vom 28. April 2017: „Auf dem Weg zum modularen Superrechner der nächsten Generation“Ansprechpartner:

Prof. Dr. Dr. Thomas Lippert
Direktor am Institute for Advanced Simulation, Leiter des Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich
Tel. +49 2461 61-6402
E-mail: th.lippert@fz-juelich.de

Dr. Estela Suarez
Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich
Tel. +49 2461 61-9110
E-mail: e.suarez@fz-juelich.de

Pressekontakt:

Tobias Schlößer
Pressereferent, Forschungszentrum Jülich
Tel. +49 2461 61-4771
E-Mail: t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich GmbH
Weitere Informationen:
http://fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Das VLT der ESO arbeitet erstmals wie ein 16-Meter-Teleskop

Erstes Licht für das ESPRESSO-Instrument mit allen vier Hauptteleskopen

Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht....

Im Focus: Neuer Quantenspeicher behält Information über Stunden

Information in einem Quantensystem abzuspeichern ist schwer, sie geht meist rasch verloren. An der TU Wien erzielte man nun ultralange Speicherzeiten mit winzigen Diamanten.

Mit Quantenteilchen kann man Information speichern und manipulieren – das ist die Basis für viele vielversprechende Technologien, vom hochsensiblen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auf der grünen Welle in die Zukunft des Mobilfunks

16.02.2018 | Veranstaltungen

Smart City: Interdisziplinäre Konferenz zu Solarenergie und Architektur

15.02.2018 | Veranstaltungen

Forschung für fruchtbare Böden / BonaRes-Konferenz 2018 versammelt internationale Bodenforscher

15.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste integrierte Schaltkreise (IC) aus Plastik

17.02.2018 | Energie und Elektrotechnik

Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt

16.02.2018 | Biowissenschaften Chemie

Neue Strategien zur Behandlung chronischer Nierenleiden kommen aus der Tierwelt

16.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics