Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supercharged

16.11.2012
Researchers discover technique to kick a record number of electrons out of an atom with an X-ray laser

Supercharging is a technique no longer confined to automotive enthusiasts.

Artem Rudenko, a new assistant professor of physics at Kansas State University and member of the James R. Macdonald Laboratory, was one of the principal investigators in an international physics collaboration that used the world's most powerful X-ray laser to supercharge an atom. By stripping a record 36 electrons from a xenon atom, researchers were able to bring the atom to a high positively charged state thought to unachievable with X-ray energy.

The findings will help scientists create and study extreme new states of matter, such as highly charged plasma, by fine-tuning the laser's X-ray radiation wavelengths in resonance with atomic levels -- resulting in ultra-efficient electron removal.

Conversely, researchers can use the findings to tune the laser wavelength to avoid enhanced electron stripping. This will reduce damage caused by X-rays and help produce better quality images of nano-world objects.

"Taking single-shot, real-time images of viruses, proteins or even smaller objects is a long-standing dream that came close to reality with the advent of powerful X-ray laser like the Linac Coherent Light Source," Rudenko said. "The main problem, however, is that such a laser also inevitably destroys the sample in the process of acquiring an image, and reducing this destruction by any means is critical for producing high-quality images."

The study on supercharging was performed through a large international collaboration led by Daniel Rolles from Max Planck Advanced Study Group, or ASG, in Hamburg, Germany, along with Rudenko and Joachim Ullrich, now a president of the PTB, the German national metrology institute.

"We brought 11 tons of equipment funded by the German Max-Planck Society to LCLS, which is a unique 1.5 km-long X-ray laser operated by Stanford University for the U.S. Department of Energy, and involved scientists from 19 research centers all over the world," Rudenko said. "We also needed to come back one year after our first experiment and repeat the measurements to understand the results. From all that we knew about this process we expected to strip at most 26 electrons, and it immediately became clear that the existing theoretical approaches have to be modified."

For the second leg of experiments physicists chose even higher X-ray energy -- and, surprisingly, saw fewer electrons kicked out of the atom. The key was that even though the energy was higher, it was not in resonance.

"While it is known that resonances in atoms affect their charged states, it was unclear what a dramatic effect this could have in heavy atoms like xenon under ultra-intense X-rays," Rudenko said. "Besides ejecting dozens of electrons, this more than doubled the energy absorbed per atom compared to all expectations."

Follow-up experiments led by Rudenko discovered similar effects in krypton atoms and several molecules.

The results were analyzed by Benedict Rudek from ASG Hamburg and reported in Nature Photonics journal in the article, "Ultra-efficient ionization of heavy atoms by intense X-ray free-electron laser pulses," http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2012.261.html.

For more information on the Linac Coherent Light Source, or LCLS, and the instrument used for the project, go to https://portal.slac.stanford.edu/sites/lcls_public/Pages/Default.aspx and http://today.slac.stanford.edu/feature/2009/lcls-camp.asp

Artem Rudenko | EurekAlert!
Further information:
http://www.ksu.edu

More articles from Physics and Astronomy:

nachricht Successful Boron-Doping of Graphene Nanoribbon
27.08.2015 | Universität Basel

nachricht New theory leads to radiationless revolution
27.08.2015 | Australian National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optische Schalter - Lernen mit Licht

Einem deutsch-französischen Team ist es gelungen, einen lichtempfindlichen Schalter für Nervenzellen zu entwickeln. Dies ermöglicht neue Einblicke in die Funktionsweise von Gedächtnis und Lernen, aber auch in die Entstehung von Krankheiten.

Lernen ist nur möglich, weil die Verknüpfungen zwischen den Nervenzellen im Gehirn fortwährend umgebaut werden: Je häufiger bestimmte Reizübertragungswege...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Membranprotein in Bern erstmals entschlüsselt

Dreidimensionale (3D) Atommodelle von Proteinen sind wichtig, um deren Funktion zu verstehen. Dies ermöglicht unter anderem die Entwicklung neuer Therapieansätze für Krankheiten. Berner Strukturbiologen ist es nun gelungen, die Struktur eines wichtigen Membranproteins zu entschlüsseln – dies gelingt relativ selten und ist eine Premiere in Bern.

Membranproteine befinden sich in den Wänden der Zellen, den Zellmembranen, und nehmen im menschlichen Körper lebenswichtige Funktionen wahr. Zu ihnen gehören...

Im Focus: Quantenbeugung an einem Hauch von Nichts

Die Quantenphysik besagt, dass sich auch massive Objekte wie Wellen verhalten und scheinbar an vielen Orten zugleich sein können. Dieses Phänomen kann nachgewiesen werden, indem man diese Materiewellen an einem Gitter beugt. Eine europäische Kollaboration hat nun erstmals die Delokalisation von massiven Molekülen an einem Gitter nachgewiesen, das nur noch eine einzige Atomlage dick ist. Dieses Experiment lotete die technischen Grenzen der Materiewellentechnologie aus und knüpft dabei an ein Gedankenexperiment von Bohr und Einstein an. Die Ergebnisse werden aktuell im Journal "Nature Nanotechnology" veröffentlicht.

Die quantenmechanische Wellennatur der Materie ist die Grundlage für viele moderne Technologien, wie z. B. die höchstauflösende Elektronenmikroskopie, die...

Im Focus: Auf Zeitreise in die Vergangenheit von Randmeeren: IOW-Expedition erkundet kanadische Küstengewässer

Wie und warum haben sich küstennahe Gewässer im Lauf der letzten Jahrzehnte und Jahrhunderte verändert? Wie kann man unterscheiden, welche Prozesse natürlicher Weise dazu beigetragen haben und welche durch den Einfluss des Menschen angestoßen wurden? Lässt sich die Ostsee als intensiv erforschtes Modell mit anderen Randmeeren vergleichen? Diese Fragen stehen im Mittelpunkt der Expedition der MARIA S. MERIAN, die am 25. August 2015 im kanadischen Halifax startet und das Forschungsschiff unter Federführung des Leibniz-Instituts für Ostseeforschung Warnemünde (IOW) in den Sankt-Lorenz-Strom und den Sankt-Lorenz-Golf und anschließend entlang der Küste von Labrador bis in die Hudson-Straße führt.

Mit an Bord sind insgesamt 25 WissenschaftlerInnen, darunter 15 vom IOW und 10 weitere
kanadische und U.S.-amerikanische Forschungspartner. Koordiniert wird...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konzepte gegen Fachkräftemangel: Demografiekonferenz in Halle

27.08.2015 | Veranstaltungen

Neue Lösungen für Passivierung und Wafering: Fraunhofer CSP auf der EU PVSEC

27.08.2015 | Veranstaltungen

Tagung des CHF-KL: Industrie 4.0 und Digitalisierung - Herausforderungen für das Personalmanagement

27.08.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Tiefer Blick in die Mechanismen von Halos

27.08.2015 | Physik Astronomie

Forschungsteam der Universität Hamburg beobachtet Auferstehung eines kosmischen (Radio-)Phönix

27.08.2015 | Physik Astronomie

Erfolgreiche Bor-Dotierung von Graphen-Nanoband

27.08.2015 | Physik Astronomie