Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Super Resolution Mikroskopie für Pharma: Patente für multiple 3D Komplexmarkierung erteilt

22.12.2011
Wirkungsweise von Medikamenten in Körperzellen wird transparent – Mit der LIMON 3D Super Resolution Mikroskopie (LIght MicroscOpical Nanosizing) erschließt Prof. Dr. Dr. Christoph Cremer neue Möglichkeiten für die Pharmaforschung. 3D Molekülkomplexe sogenannter Biomolekularer Maschinen, Ansatzpunkte von Medikamenten, können dadurch in vivo untersucht werden.

„Mit den erteilten Patenten haben wir eine Super Resolution Mikroskopie, die für die molekulare Biotechnologie, Pharmaindustrie und personalisierte Medizin von großer Bedeutung ist“, so Dr. Andrea Nestl, als Innovationsmanagerin des Technologie-Lizenz-Büros (TLB) verantwortlich für die Patentstrategie und die Kommerzialisierung.


Auch in der pharmazeutischen Forschung und der personalisierten Medizin wird die Super Resolution Mikroskopie LIMON (Kombination von SPDM and SMI) in der Zukunft eine wichtige Rolle spielen Abbildung: 3D Nanoskopie von Brustkrebs mit Her3 und Her2, dem Zielmolekül des Brustkrebs-Medikaments Herceptin

Biomolekulare Maschinen sind hochkomplexe Nanostrukturen, die in den Körperzellen grundlegende Funktionen erfüllen und aus mehreren großen Molekülen bestehen. Sie sind je nach Funktionszustand in einer ganz bestimmten Weise dreidimensional im Raum angeordnet. Beispielhaft sind die Nukleosomen, die es der zwei Meter langen Trägerin der Erbinformation, der DNS, ermöglichen, sich in den Zellen des Körpers so zu falten, dass sie in einem Raum von wenigen Millionstel Millimetern Durchmesser untergebracht wird und als Informations- und Steuerzentrum dienen kann.

Mit LIMON 3D in Kombination mit LIMON Komplexmarkierung von Professor Christoph Cremer ist es möglich, einzelne Proteine oder Nukleinsäuren, die im 3D-Molekülkomplex sogenannter Biomolekularer Maschinen versteckt sind, zu markieren und sichtbar zu machen, ohne den Komplex zu zerstören. Bislang bestand das Problem darin, die Komplexe in vielen Fällen zerstören zu müssen, um die darin befindlichen einzelnen Makomoleküle genau analysieren zu können. Alternativ musste man auf Computer-Simulationsmodelle oder auf aufwändige Kernresonanzverfahren zurückgreifen, um sich die dreidimensionale Struktur solcher Komplexe vorstellen zu können.

Das mit einem europäischen Patent geschützte neue LIMON-Komplexmarkierungs-Verfahren erlaubt die Identifizierung und räumliche Positionierung von einzelnen Komponenten des Komplexes in seiner ursprünglichen, also biologisch relevanten Zusammensetzung.

Neben der üblichen Markierung eines Moleküls mit nur einem Fluoreszenzmolekül besteht nun auch die Möglichkeit, das Zielmolekül mit einer Vielzahl von Fluoreszenzmarkern desselben Typs an mehreren Stellen zu markieren. Das ist besonders dann von großer Bedeutung, wenn man einen Komplex untersuchen will, bei dem nicht alle Bindestellen für Sonden zur Sichtbarmachung der einzelnen Partner zugänglich sind.

„Die pharmazeutische Industrie kann auf diese Weise die Wechselwirkungen der Biomolekularen Maschinen mit pharmazeutisch aktiven Verbindungen gezielt verfolgen und grundlegende mechanistische Fragen zu Wirkstoffen beantworten“, betont Dr. Andrea Nestl, die im Auftrag der Universität Heidelberg die Patentierungs- und Vermarktungsstrategie entwickelt. Dadurch wird die Wirkungsweise von Arzneistoffen in den Zellen transparent und die kostspielige Entwicklung von Medikamenten, welche sich im Bereich von 500 Millionen bis zu 2 Milliarden US-Dollar bewegt und in der Regel 10 bis 12 Jahre dauert, kann in kürzerer Zeit und kostengünstiger erfolgen.

Die 3D Super Resolution Mikroskopie LIMON ist ein hervorragendes Instrument zur Entwicklung und Validierung von therapeutisch wirksamen Substanzen. Mit dem Verfahren wurde es zum Beispiel erstmals ermöglicht, genau das Genprodukt zu untersuchen, welches für 20 Prozent des vererbbaren metastasierenden Brustkrebses verantwortlich ist; auf diese Weise soll die bestehende Therapie über Herceptin patientenspezifisch optimiert werden.

Aufgrund individueller genetischer Ausstattung sprechen Patienten mit identischer Diagnose auf die Behandlung mit dem gleichen Medikament oft sehr unterschiedlich an. Die personalisierte Medizin untersucht und berücksichtigt alle diagnostischen Möglichkeiten zur Charakterisierung der persönlichen Besonderheiten. Hierbei werden die LIMON Super Resolution Mikroskopie Patente einen wesentlichen Beitrag leisten. Die Ergebnisse der Brustkrebsuntersuchung wurden kürzlich in der angesehenen Fachzeitschrift Journal of Microscopy publiziert (Rainer Kaufmann, Patrick Müller, Georg Hildenbrand, Michael Hausmann & Christoph Cremer: Analysis of Her2/neu membrane protein clusters in different types of breast cancer cells using localization microscopy Journal of Microscopy 242: 46-54 (2011)).

Professor Christoph Cremer verknüpft für seine LIMON 3D Super Resolution Mikroskopie zwei seiner ebenfalls von TLB patentierten 2D Superresolution Mikroskopie-Verfahren miteinander: die Lokalisationsmikroskopie SPDM (Spectral Precision Distance Microscopy) sowie die strukturierte Beleuchtung SMI (Spatially Modulated Illumination). Die Hauptpatente zu LIMON bestehen in Europa und den USA. Mit der europäischen Teilanmeldung ist das dritte Patent der Patentfamilie LIMON erteilt worden.

Christoph Cremer ist Professor und Ordinarius für Angewandte Optik & Informationsverarbeitung am Kirchhoff Institut für Physik, sowie am Institut für Pharmazie & Molekulare Biotechnologie (IPMB), ebenfalls an der Universität Heidelberg, und Gruppenleiter im Bereich Super Resolution Microscopy am Institut für Molekulare Biologie gGmbH (IMB) an der Universität Mainz; außerdem ist er wissenschaftliches Mitglied am US-Amerikanischen Jackson Laboratory in Bar Harbor/Maine.

Professor Christoph Cremer ist langjähriger Koordinator des BMM-Netzwerkes "BioMolekulare Maschinen/BioMolekulare Mikroskopie" der Bioregion Rhein-Neckar, an dem zahlreiche Heidelberger Arbeitsgruppen aus den Bereichen Medizin, Mathematik/Informatik, Chemie, Pharmazie, Physik sowie Biologie beteiligt sind. Zielsetzung ist die quantitative Analyse und Modellierung von "Biomolekularen Maschinen" außerhalb der Zelle und in der lebenden Zelle selbst.

Dr. Regina Kratt | idw
Weitere Informationen:
http://www.tlb.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften