Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Super Resolution Mikroskopie für Pharma: Patente für multiple 3D Komplexmarkierung erteilt

22.12.2011
Wirkungsweise von Medikamenten in Körperzellen wird transparent – Mit der LIMON 3D Super Resolution Mikroskopie (LIght MicroscOpical Nanosizing) erschließt Prof. Dr. Dr. Christoph Cremer neue Möglichkeiten für die Pharmaforschung. 3D Molekülkomplexe sogenannter Biomolekularer Maschinen, Ansatzpunkte von Medikamenten, können dadurch in vivo untersucht werden.

„Mit den erteilten Patenten haben wir eine Super Resolution Mikroskopie, die für die molekulare Biotechnologie, Pharmaindustrie und personalisierte Medizin von großer Bedeutung ist“, so Dr. Andrea Nestl, als Innovationsmanagerin des Technologie-Lizenz-Büros (TLB) verantwortlich für die Patentstrategie und die Kommerzialisierung.


Auch in der pharmazeutischen Forschung und der personalisierten Medizin wird die Super Resolution Mikroskopie LIMON (Kombination von SPDM and SMI) in der Zukunft eine wichtige Rolle spielen Abbildung: 3D Nanoskopie von Brustkrebs mit Her3 und Her2, dem Zielmolekül des Brustkrebs-Medikaments Herceptin

Biomolekulare Maschinen sind hochkomplexe Nanostrukturen, die in den Körperzellen grundlegende Funktionen erfüllen und aus mehreren großen Molekülen bestehen. Sie sind je nach Funktionszustand in einer ganz bestimmten Weise dreidimensional im Raum angeordnet. Beispielhaft sind die Nukleosomen, die es der zwei Meter langen Trägerin der Erbinformation, der DNS, ermöglichen, sich in den Zellen des Körpers so zu falten, dass sie in einem Raum von wenigen Millionstel Millimetern Durchmesser untergebracht wird und als Informations- und Steuerzentrum dienen kann.

Mit LIMON 3D in Kombination mit LIMON Komplexmarkierung von Professor Christoph Cremer ist es möglich, einzelne Proteine oder Nukleinsäuren, die im 3D-Molekülkomplex sogenannter Biomolekularer Maschinen versteckt sind, zu markieren und sichtbar zu machen, ohne den Komplex zu zerstören. Bislang bestand das Problem darin, die Komplexe in vielen Fällen zerstören zu müssen, um die darin befindlichen einzelnen Makomoleküle genau analysieren zu können. Alternativ musste man auf Computer-Simulationsmodelle oder auf aufwändige Kernresonanzverfahren zurückgreifen, um sich die dreidimensionale Struktur solcher Komplexe vorstellen zu können.

Das mit einem europäischen Patent geschützte neue LIMON-Komplexmarkierungs-Verfahren erlaubt die Identifizierung und räumliche Positionierung von einzelnen Komponenten des Komplexes in seiner ursprünglichen, also biologisch relevanten Zusammensetzung.

Neben der üblichen Markierung eines Moleküls mit nur einem Fluoreszenzmolekül besteht nun auch die Möglichkeit, das Zielmolekül mit einer Vielzahl von Fluoreszenzmarkern desselben Typs an mehreren Stellen zu markieren. Das ist besonders dann von großer Bedeutung, wenn man einen Komplex untersuchen will, bei dem nicht alle Bindestellen für Sonden zur Sichtbarmachung der einzelnen Partner zugänglich sind.

„Die pharmazeutische Industrie kann auf diese Weise die Wechselwirkungen der Biomolekularen Maschinen mit pharmazeutisch aktiven Verbindungen gezielt verfolgen und grundlegende mechanistische Fragen zu Wirkstoffen beantworten“, betont Dr. Andrea Nestl, die im Auftrag der Universität Heidelberg die Patentierungs- und Vermarktungsstrategie entwickelt. Dadurch wird die Wirkungsweise von Arzneistoffen in den Zellen transparent und die kostspielige Entwicklung von Medikamenten, welche sich im Bereich von 500 Millionen bis zu 2 Milliarden US-Dollar bewegt und in der Regel 10 bis 12 Jahre dauert, kann in kürzerer Zeit und kostengünstiger erfolgen.

Die 3D Super Resolution Mikroskopie LIMON ist ein hervorragendes Instrument zur Entwicklung und Validierung von therapeutisch wirksamen Substanzen. Mit dem Verfahren wurde es zum Beispiel erstmals ermöglicht, genau das Genprodukt zu untersuchen, welches für 20 Prozent des vererbbaren metastasierenden Brustkrebses verantwortlich ist; auf diese Weise soll die bestehende Therapie über Herceptin patientenspezifisch optimiert werden.

Aufgrund individueller genetischer Ausstattung sprechen Patienten mit identischer Diagnose auf die Behandlung mit dem gleichen Medikament oft sehr unterschiedlich an. Die personalisierte Medizin untersucht und berücksichtigt alle diagnostischen Möglichkeiten zur Charakterisierung der persönlichen Besonderheiten. Hierbei werden die LIMON Super Resolution Mikroskopie Patente einen wesentlichen Beitrag leisten. Die Ergebnisse der Brustkrebsuntersuchung wurden kürzlich in der angesehenen Fachzeitschrift Journal of Microscopy publiziert (Rainer Kaufmann, Patrick Müller, Georg Hildenbrand, Michael Hausmann & Christoph Cremer: Analysis of Her2/neu membrane protein clusters in different types of breast cancer cells using localization microscopy Journal of Microscopy 242: 46-54 (2011)).

Professor Christoph Cremer verknüpft für seine LIMON 3D Super Resolution Mikroskopie zwei seiner ebenfalls von TLB patentierten 2D Superresolution Mikroskopie-Verfahren miteinander: die Lokalisationsmikroskopie SPDM (Spectral Precision Distance Microscopy) sowie die strukturierte Beleuchtung SMI (Spatially Modulated Illumination). Die Hauptpatente zu LIMON bestehen in Europa und den USA. Mit der europäischen Teilanmeldung ist das dritte Patent der Patentfamilie LIMON erteilt worden.

Christoph Cremer ist Professor und Ordinarius für Angewandte Optik & Informationsverarbeitung am Kirchhoff Institut für Physik, sowie am Institut für Pharmazie & Molekulare Biotechnologie (IPMB), ebenfalls an der Universität Heidelberg, und Gruppenleiter im Bereich Super Resolution Microscopy am Institut für Molekulare Biologie gGmbH (IMB) an der Universität Mainz; außerdem ist er wissenschaftliches Mitglied am US-Amerikanischen Jackson Laboratory in Bar Harbor/Maine.

Professor Christoph Cremer ist langjähriger Koordinator des BMM-Netzwerkes "BioMolekulare Maschinen/BioMolekulare Mikroskopie" der Bioregion Rhein-Neckar, an dem zahlreiche Heidelberger Arbeitsgruppen aus den Bereichen Medizin, Mathematik/Informatik, Chemie, Pharmazie, Physik sowie Biologie beteiligt sind. Zielsetzung ist die quantitative Analyse und Modellierung von "Biomolekularen Maschinen" außerhalb der Zelle und in der lebenden Zelle selbst.

Dr. Regina Kratt | idw
Weitere Informationen:
http://www.tlb.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen