Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf der Suche nach Neutrinos: RUB-Physiker unterstützen IceCube-Team mit physikalischen Modellen

19.04.2012
Bombardement aus dem All
RUB-Forscher unterstützen Suche nach Neutrinos mit physikalischen Modellen
Nature: IceCube-Team schränkt mögliche Quellen der kosmischen Strahlung ein

Unaufhörlich prasseln geladene Teilchen aus dem Weltall von allen Seiten auf unseren Planeten. Wo diese kosmische Strahlung herkommt, ist unklar. Mit dem Neutrinodetektor IceCube am Südpol testet ein internationales Forscherteam, welche Himmelsobjekte die kosmische Strahlung aussenden.


Kosmische Strahlung: Geladene Teilchen, die mit hoher Geschwindigkeit durchs Weltall fliegen, bringen die Erdatmosphäre zum Leuchten, wenn sie mit ihr wechselwirken. Es entstehen Polarlichter.
Foto: Jens Dreyer

Hauptkandidaten waren die sehr energiereichen Gammastrahlenausbrüche. In Nature berichten die Forscher jetzt, dass die gemessenen Daten diese Theorie nicht bestätigen. „Wir sind auf dem besten Weg, Gammastrahlenausbrüche als Quellen der kosmischen Strahlung auszuschließen“, sagt Juniorprofessorin Julia Becker von der Ruhr-Universität. Ihr Team vom Lehrstuhl für Theoretische Physik IV unterstützt die Suche nach dem Ursprung des Teilchenbombardements mit physikalischen Modellen.

Kosmische Strahlung auf Abwegen

Kosmische Strahlung besteht aus Elektronen, Protonen und anderen Atomkernen, die mit hoher Geschwindigkeit durchs All fliegen. Magnetfelder lenken sie ab, so dass die Teilchen nicht auf gerader Bahn zur Erde gelangen. Das macht es schwer, ihre Quelle zu identifizieren. Dort, wo die kosmische Strahlung entsteht, bilden sich aber auch elektrisch neutrale Teilchen, die sogenannten Neutrinos, die nicht von Magnetfeldern abgelenkt werden. Finden die Forscher also die Neutrinoquellen, kennen sie auch den Ursprung der kosmischen Strahlung. Zu diesem Zweck wurde 2010 der Neutrinodetektor „IceCube“ fertiggestellt. RUB-Forscher Jens Dreyer war am Südpol, als das geschah (wir berichteten im Januar 2011: http://aktuell.ruhr-uni-bochum.de/pm2011/pm00017.html.de).

Gammastrahlenausbruch statt Atomtest

Beckers Team berechnet, welche astrophysikalischen Quellen am besten geeignet sind, Neutrinos zu produzieren. Ein heißer Kandidat: die Gammastrahlenausbrüche. Wenn schwere Sterne in einer Supernova enden, stoßen sie einen Großteil ihrer Masse aus. Manchmal werden zusätzlich noch zwei große Materieströme in entgegengesetzte Richtungen geschleudert – ein Gammastrahlenausbruch findet statt. Dabei entstehen hochenergetische Photonen, die einen Teil des Himmels für etwa zehn Sekunden aufleuchten lassen. „Gammastrahlenausbrüche wurden zum ersten Mal in den 60er Jahren von militärischen Satelliten entdeckt. Eigentlich war es deren Aufgabe, Atomwaffentests auf der gegnerischen Seite zu finden“, erzählt Becker.

Kollision von Photonen und geladenen Teilchen

„Bei Gammastrahlenausbrüchen wird extrem viel Energie frei und ein Teil dieser Energie könnte in die kosmische Strahlung gehen“, sagt die RUB-Physikerin. Wenn die kosmische Strahlung tatsächlich so entsteht, würde sie mit den Photonen der Gammastrahlenausbrüche wechselwirken und dabei Neutrinos erzeugen. Theoretische Berechnungen ergeben, dass der daraus resultierende Neutrinofluss groß genug wäre, um von IceCube detektiert zu werden. Die RUB-Forscher trugen in langjähriger Arbeit im IceCube-Projekt dazu bei, die Analyse der Daten speziell für Gammastrahlenausbrüche zu optimieren.

Weniger Neutrinos als erwartet

Doch IceCube fand keine Neutrinos, die mit Gammastrahlenausbrüchen zusammenhängen. „Das bedeutet, dass unser Modell in der jetzigen Form nicht stimmen kann“, resümiert Becker. Zwei Interpretationen der Ergebnisse sind denkbar: Entweder die Annahme, dass die kosmische Strahlung aus den Gammastrahlenausbrüchen stammt, ist falsch. Oder das Modell repräsentiert die Umgebung, in der kosmische Strahlung und Photonen wechselwirken, nicht exakt genug. „Wir können an dieser Stelle zwar noch nicht mit absoluter Sicherheit ausschließen, dass Gammastrahlenausbrüche die Quelle der kosmischen Strahlung sind“, sagt die Forscherin. „Das werden erst die nächsten Jahre mit IceCube eindeutig zeigen.“ Am Lehrstuhl für Theoretische Physik IV ist Martino Olivo für eine Nachfolgeanalyse zuständig. Mit einem erweiterten Datensatz von IceCube soll das aktuelle Ergebnis bestätigt werden.

Titelaufnahme

IceCube collaboration (2012): An absence of neutrinos associated with cosmic-ray acceleration in gamma-ray bursts, Nature, doi: 10.1038/nature11068

Weitere Informationen

Prof. Dr. Julia Becker, Hochenergie Astroteilchenphysik, Fakultät für Physik und Astronomie der Ruhr-Universität, 44780 Bochum, Tel.: 0234/32-23779
Julia.Becker@rub.de

Angeklickt

Hochenergie-Astroteilchenphysik an der RUB
http://www.tp4.rub.de/hat/de/index.html

Webseite des IceCube-Projekts
http://icecube.wisc.edu/

Redaktion
Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften