Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Suche nach Leben im Alpha-Centauri-System

06.08.2015

Mit einer neuen Technik können Wissenschaftler nach im Licht reflektierten Spuren von Leben auf Exoplaneten suchen

Ein neuer Ansatz, um nach Leben auf anderen Planeten zu forschen: Ein internationales Team hat herausgefunden, dass Biopigmente, so genannte biologische photosynthetische Pigmente, von Pflanzen spezifische Spuren in dem von ihnen reflektierten Licht hinterlassen.


Das vom Blatt reflektierte polarisierte Licht enthält einen Fußabdruck von den Biopigmenten des Blatts. Mit einem Polarisationsfilter, hier als Brille dargestellt, sind diese Biosignaturen nachweisbar. Grafik: Svetlana Berdyugina

Diese Biosignaturen hat Prof. Dr. Svetlana Berdyugina vom Physikalischen Institut der Albert-Ludwigs-Universität und dem Freiburger Kiepenheuer-Institut für Sonnenphysik gemeinsam mit Forscherinnen und Forschern von der University of Hawaiʻi at Mānoa/USA und der Universität Aarhus/Dänemark mithilfe von Polarisationsfiltern nachgewiesen.

Wären auf einem Planeten Biopigmente als Zeichen für Leben vorhanden, würden diese ihre Signatur im reflektierten Licht hinterlassen und wären nachweisbar. Das Team hat die Ergebnisse nun im „International Journal of Astrobiology“ veröffentlicht.

Photosynthetische Pigmente sind pflanzliche Substanzen, die bestimmte Wellenlängen des sichtbaren Lichts absorbieren und reflektieren. Dadurch erscheinen sie in den reflektierten Wellenbereichen farbig. Biopigmente befinden sich in Pflanzen, Algen, Bakterien, in der menschlichen Haut sowie im menschlichen Auge und sind für deren farbige Erscheinungen verantwortlich.

So absorbieren zum Beispiel Chlorophyll-Pigmente in Pflanzenblättern blaues bis rotes Licht, reflektieren dagegen einen kleinen Teil des grünen Lichts im sichtbaren Bereich und erscheinen dadurch grün. Davon ausgenommen ist infrarotes Licht, das zur Hälfte reflektiert und zur anderen Hälfte durch das Blatt hindurch geht. Carotinoide absorbieren blaues und rotes, reflektieren aber gelbes Licht und sind deshalb typischerweise rot, orange oder gelb gefärbt.

Die Wissenschaftlerinnen und Wissenschaftler entdeckten, dass der Teil des sichtbaren Lichts, den verschiedene Pflanzen in Farben reflektieren, in bestimmte Richtungen schwingt, das heißt, er polarisiert. Jedes Biopigment hinterlässt einen farbigen Fußabdruck im polarisierten Licht. Diese Biosignatur können die Forscher mithilfe von Polarisationsfiltern, die ähnlich wie eine Polaroid-Sonnenbrille oder eine 3D-Kinobrille funktionieren, belegen.

Auch die Signatur im polarisierten Licht von Pflanzen auf fernen Planeten wäre auf diese Weise nachweisbar. Der hohe Kontrast der Biosignaturen in der Polarisation ist entscheidend dafür, sie im überwältigend hellen Sternenlicht zu finden, in dem die exoplanetaren Signale versteckt sind.

„Diese Technik könnte der Schlüssel dazu sein, in dem der Sonne nächstgelegenen Planetensystem Alpha Centauri nach Leben zu suchen“, sagt Berdyugina. Vor allem der Stern Alpha Centauri B ist der Astrophysikerin zufolge aufgrund seiner Entfernung von der Erde für die Suche mit Teleskopen optimal. Bislang ist noch kein Planet in der bewohnbaren Zone von Alpha Centauri B bekannt – also dem Abstandsbereich, in dem er sich von seinem Zentralgestirn befinden kann, damit flüssiges Wasser dauerhaft als Voraussetzung für erdähnliches Leben auf der Oberfläche existieren kann.

„Sogar schon bevor ein solcher Planet gefunden wird, können wir mithilfe des Polarisierungsverfahrens nach Biosignaturen suchen, die auf Leben hindeuten“, sagt Berdyugina. Für weiter entfernte Planetensysteme werden deutlich größere Teleskope benötigt. Bis Wissenschaftler solche Teleskope bauen, möchte das Team im Licht des Alpha-Centauri-Systems nach photosynthetischen Fußabdrücken suchen.

Originalpublikation:
Svetlana V. Berdyugina, Jeff R. Kuhn, David M. Harrington, Tina Šantl-Temkiv and E. John Messersmith. “Remote sensing of life: polarimetric signatures of photosynthetic pigments as sensitive biomarkers.” International Journal of Astrobiology. doi:10.1017/S1473550415000129.
http://dx.doi.org/10.1017/S1473550415000129

Artikel in uni’wissen über die Forschung von Svetlana Berdyugina:
http://www.pr2.uni-freiburg.de/publikationen/uniwissen/uniwissen-2014-1/#/4

Kontakt:
Prof. Dr. Svetlana Berdyugina
Physikalisches Institut
Albert-Ludwigs-Universität Freiburg
E-Mail: sveta@kis.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2015/pm.2015-08-06.116

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics