Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Suche nach dem leisesten Geräusch des Universums

20.07.2012
Sensibelstes Mikrofon der Welt detektiert winzigste Schallwellen

Schallwellen mit Amplituden, die nur wenige Prozent des Protonenradius betragen: das können Forscher an der Chalmers University of Technology in Schweden mittels eines neuen Detektors messen.


Quanten-Mikrofon mit Schallwellen (Foto: Philip Krantz, Chalmers)

Ihr sogenannte "Quanten Mikrofon" passt auf einen Chip, der nur etwas über einen halben Zentimeter lang ist. Damit der Detektor funktioniert, muss er auf Temperaturen nahe dem absoluten Nullpunkt gebracht werden. Auf den minimalen Größenskalen beginnen die mechanischen Schallwellen den Gesetzen der Quantenwelt zu gehorchen. Damit nähern sich die Forscher dem leisestmöglichen "Geräusch" an, dem sogenannten "Phonon". Die Ergebnisse wurden im Fachjournal "Nature Physics" veröffentlicht.

Nicht hörbar

Für Menschen sind die Schallwellen, die in Schweden untersucht werden, nicht nur wegen ihrer äußerst geringen Lautstärke nicht hörbar. Die Frequenz der Wellen beträgt beinahe ein Gigahertz, der entstehende Ton befindet sich 21 Oktaven über dem eingestrichenen A. "Der menschliche Hörbereich liegt etwa zwischen 20 Hertz und 20 Kilohertz. Die Membran im Ohr ist sehr flexibel und reagiert schon auf Auslenkungen in Bereich des Durchmessers eines Wasserstoff-Atoms. Als Schall werden aber auch mechanische Wellen mit winzigen Amplituden bezeichnet", sagt Reinhard Weber von der Karl von Ossietzky Universität Oldenburg http://uni-oldenburg.de gegenüber pressetext.

Die Wellenlänge beträgt lediglich drei Mikrometer. Das Quantenmikrofon besteht aus einem Einzelelektronentransistor, mit dem winzige Spannungsänderungen detektiert werden können. Bei den winzigen Schallwellen handelt es sich um akustische Oberflächenwellen - mechanische Störungen, die sich auf der Oberfläche des Chips, unter dem Detektor, ausbreiten.

Quanten-Effekt

Bei der Bewegung durch die Atome des Halbleiters verändern die Schallwellen deren Ladung, was der extrem sensible Detektor registriert. Auf dem Chip pflanzt sich der Schall zehn Mal schneller fort als in der Luft. Erzeugt werden die Mini-Schallwellen von zwei winzigen Aluminium-Konen, die über ein elektrisches Feld verbunden werden. Auf dem Chip befindet sich zudem eine drei Millimeter lange Echokammer, in der die Schallwellen hin und her geworfen werden. So können die Forscher mit Gewissheit sagen, dass es sich um akustische Wellen handelt.

Die Forschungsergebnisse könnten in Zukunft zu hybriden Schaltkreisen mit elektronischen und akustischen Komponenten führen. Ein Einsatz zur Informationsübertragung in künftigen Quantencomputern wäre theoretisch ebenfalls denkbar. Zudem geben die Experimente den Wissenschaftlern weiteren Einblick in die Quantenwelt. In Zukunft wollen die Forscher sogar Phononen messbar machen, die kleinstmögliche Abweichung von absoluter Stille. "Der Impuls eines Moleküls oder Atoms muss so stark sein, dass er die Nachbarn erreicht, sonst entsteht keine Schallwelle", so Weber.

Markus Keßler | pressetext.redaktion
Weitere Informationen:
http://www.uni-oldenburg.de

Weitere Berichte zu: Amplituden Atom Detektor Geräusch Quantenwelt Schallwelle Universum Welle

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks Industrie & Wirtschaft
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungsnachrichten

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungsnachrichten

CES Innovation Award für kombinierte Blick- und Spracheingabe im Auto

23.01.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics