Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Suche nach dem leisesten Geräusch des Universums

20.07.2012
Sensibelstes Mikrofon der Welt detektiert winzigste Schallwellen

Schallwellen mit Amplituden, die nur wenige Prozent des Protonenradius betragen: das können Forscher an der Chalmers University of Technology in Schweden mittels eines neuen Detektors messen.


Quanten-Mikrofon mit Schallwellen (Foto: Philip Krantz, Chalmers)

Ihr sogenannte "Quanten Mikrofon" passt auf einen Chip, der nur etwas über einen halben Zentimeter lang ist. Damit der Detektor funktioniert, muss er auf Temperaturen nahe dem absoluten Nullpunkt gebracht werden. Auf den minimalen Größenskalen beginnen die mechanischen Schallwellen den Gesetzen der Quantenwelt zu gehorchen. Damit nähern sich die Forscher dem leisestmöglichen "Geräusch" an, dem sogenannten "Phonon". Die Ergebnisse wurden im Fachjournal "Nature Physics" veröffentlicht.

Nicht hörbar

Für Menschen sind die Schallwellen, die in Schweden untersucht werden, nicht nur wegen ihrer äußerst geringen Lautstärke nicht hörbar. Die Frequenz der Wellen beträgt beinahe ein Gigahertz, der entstehende Ton befindet sich 21 Oktaven über dem eingestrichenen A. "Der menschliche Hörbereich liegt etwa zwischen 20 Hertz und 20 Kilohertz. Die Membran im Ohr ist sehr flexibel und reagiert schon auf Auslenkungen in Bereich des Durchmessers eines Wasserstoff-Atoms. Als Schall werden aber auch mechanische Wellen mit winzigen Amplituden bezeichnet", sagt Reinhard Weber von der Karl von Ossietzky Universität Oldenburg http://uni-oldenburg.de gegenüber pressetext.

Die Wellenlänge beträgt lediglich drei Mikrometer. Das Quantenmikrofon besteht aus einem Einzelelektronentransistor, mit dem winzige Spannungsänderungen detektiert werden können. Bei den winzigen Schallwellen handelt es sich um akustische Oberflächenwellen - mechanische Störungen, die sich auf der Oberfläche des Chips, unter dem Detektor, ausbreiten.

Quanten-Effekt

Bei der Bewegung durch die Atome des Halbleiters verändern die Schallwellen deren Ladung, was der extrem sensible Detektor registriert. Auf dem Chip pflanzt sich der Schall zehn Mal schneller fort als in der Luft. Erzeugt werden die Mini-Schallwellen von zwei winzigen Aluminium-Konen, die über ein elektrisches Feld verbunden werden. Auf dem Chip befindet sich zudem eine drei Millimeter lange Echokammer, in der die Schallwellen hin und her geworfen werden. So können die Forscher mit Gewissheit sagen, dass es sich um akustische Wellen handelt.

Die Forschungsergebnisse könnten in Zukunft zu hybriden Schaltkreisen mit elektronischen und akustischen Komponenten führen. Ein Einsatz zur Informationsübertragung in künftigen Quantencomputern wäre theoretisch ebenfalls denkbar. Zudem geben die Experimente den Wissenschaftlern weiteren Einblick in die Quantenwelt. In Zukunft wollen die Forscher sogar Phononen messbar machen, die kleinstmögliche Abweichung von absoluter Stille. "Der Impuls eines Moleküls oder Atoms muss so stark sein, dass er die Nachbarn erreicht, sonst entsteht keine Schallwelle", so Weber.

Markus Keßler | pressetext.redaktion
Weitere Informationen:
http://www.uni-oldenburg.de

Weitere Berichte zu: Amplituden Atom Detektor Geräusch Quantenwelt Schallwelle Universum Welle

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie