Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stuttgarter Physiker vermessen erstmalig Nahfelder von dreidimensionalen optischen Nanoantennen

29.07.2013
Hochempfindliche Sensorchips werden effizienter

Forscher der Universität Stuttgart haben erstmalig Nahfelder von optischen dreidimensionalen Nanoantennen vermessen. Daniel Dregely und Prof. Harald Giessen vom 4. Physikalischen Institut stellten ihre Ergebnisse, die mit neuartiger Nanospektroskopie erzielt wurden, in der Fachzeitschrift „Nature Communications“ vor.*)


Moleküle (blau) werden entlang dreidimensionaler Nanoantennen nanometergenau positioniert und zu Schwingungen angeregt. Die Schwingungsstärke hängt von der Nahfeldverteilung (rot) der optischen Antennen ab und kann im Fernfeld gemessen werden (weiße Kurve). Abbildung Universität Stuttgart

Diese Methode liefert neue Erkenntnisse in der Wechselwirkung zwischen Licht und Materie auf der Nanoskala und ermöglicht es, optische Felder von Nanoantennen präzise zu vermessen. In zukünftigen hoch-empfindlichen Sensor-Chips, die auf optischen Antennen basieren, lässt sich damit die Detektionseffizienz optimieren.

Moleküle können mit mittelinfraroter Fernfeld-Spektroskopie aufgrund ihrer Vibrationsschwingungen, dem sogenannten spektralen Fingerabdruck, eindeutig identifiziert werden. Hierzu sind jedoch große Mengen an Molekülen nötig, da die Anregung der Vibrationsschwingung sehr ineffizient ist. Metallische optische Nanoantennen sind resonant zu einfallendem Licht und erzeugen hohe Nahfelder in ihrer direkten Umgebung. Diese erzeugten hohen Intensitäten ermöglichen es, einige wenige Moleküle oder sogar einzelne Moleküle mit Hilfe spektroskopischer Methoden sichtbar zu machen.

Aufgrund ihres Fingerabdrucks können die Moleküle auch eindeutig identifiziert werden. Dies spielt eine entscheidende Rolle in der Früherkennung von Krankheiten, in der hoch-sensitiven Detektion von schädlichen Substanzen und bei gefährlichen Konzentrationen von explosiven Gasgemischen.

Die Stuttgarter Forscher schafften es nun, wenige Moleküle neben Gold-Nanoantennen zu platzieren. Mit ihrer Technologie, die auf Elektronenstrahllithographie basiert, erreichten sie nanometergenaue Positionierung der Moleküle an verschiedene Stellen der Nanoantenne. Aufgrund der großen Nahfelder an der Nanoantenne wurde die Schwingungsanregung in den Molekülen um Größenordnungen effizienter und konnte mit konventioneller Spektroskopie sichtbar gemacht werden.

Zum ersten Mal konnte so experimentell der physikalische Prozess der Schwingungsanregung auf der Nanometerskala identifiziert werden. Konkret fand die Forschergruppe heraus, dass die Effizienz der Schwingungsanregung direkt mit den von den Antennen generierten Nahfeldintensitäten skaliert.

Mit dieser Erkenntnis entwickelten die Forscher eine Methode, um Nahfelder von optischen Antennen quantitativ zu messen. Die Auflösungsbegrenzung von konventioneller Mikroskopie konnte hier umgangen werden, da das Detektionsvolumen, in dem sich die Moleküle befinden, um ein Vielfaches kleiner als die Wellenlänge ist. Im Vergleich zu bestehenden Mikroskopie-Techniken im optischen Nahfeld, die ebenfalls Auflösungen kleiner als die Wellenlänge erzielen, hat die Methode der Stuttgarter Physiker den einzigartigen Vorteil, Nahfeldverteilungen von dreidimensionalen Antennenstrukturen zu messen.

Hierbei gelang es Daniel Dregely, während des Fabrikationsprozesses einer dreidimensionalen Antennenstruktur Moleküle an definierte Stellen einzubringen und die Schwingungsanregung und somit ihre Nahfeldintensität zu messen. Solche komplexe Nanostrukturen liefern einen weiteren Freiheitsgrad, um die Wechselwirkung im Nanometerbereich von Licht mit einzelnen Molekülen zu erhöhen. Es ist ganz wesentlich, die Nahfeldverteilung genau zu kennen, um neuartige, hoch-sensitive Sensorik-Platformen, zu entwickeln.

*) Referenz: D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures”, Nature Communications (2013). http://www.nature.com/naturecommunications

Kontakt:
Prof. Harald Giessen, Universität Stuttgart, 4. Physikalisches Institut,
Tel. 0711/685-65111, E-Mail: giessen (at) physik.uni-stuttgart.de
oder
Dipl.-Phys. Daniel Dregely, Universität Stuttgart, 4. Physikalisches Institut, Tel. 0711/685-64961, E-Mail: d.dregely (at) physik.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de
http://www.nature.com/naturecommunications

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Clevere Folien voller Quantenpunkte

27.03.2017 | Materialwissenschaften

In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich

27.03.2017 | Physik Astronomie

Klimakiller Kuh: Methan-Ausstoß von Vieh könnte bis 2050 um über 70 Prozent steigen

27.03.2017 | Biowissenschaften Chemie