Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stuttgarter Physiker vermessen erstmalig Nahfelder von dreidimensionalen optischen Nanoantennen

29.07.2013
Hochempfindliche Sensorchips werden effizienter

Forscher der Universität Stuttgart haben erstmalig Nahfelder von optischen dreidimensionalen Nanoantennen vermessen. Daniel Dregely und Prof. Harald Giessen vom 4. Physikalischen Institut stellten ihre Ergebnisse, die mit neuartiger Nanospektroskopie erzielt wurden, in der Fachzeitschrift „Nature Communications“ vor.*)


Moleküle (blau) werden entlang dreidimensionaler Nanoantennen nanometergenau positioniert und zu Schwingungen angeregt. Die Schwingungsstärke hängt von der Nahfeldverteilung (rot) der optischen Antennen ab und kann im Fernfeld gemessen werden (weiße Kurve). Abbildung Universität Stuttgart

Diese Methode liefert neue Erkenntnisse in der Wechselwirkung zwischen Licht und Materie auf der Nanoskala und ermöglicht es, optische Felder von Nanoantennen präzise zu vermessen. In zukünftigen hoch-empfindlichen Sensor-Chips, die auf optischen Antennen basieren, lässt sich damit die Detektionseffizienz optimieren.

Moleküle können mit mittelinfraroter Fernfeld-Spektroskopie aufgrund ihrer Vibrationsschwingungen, dem sogenannten spektralen Fingerabdruck, eindeutig identifiziert werden. Hierzu sind jedoch große Mengen an Molekülen nötig, da die Anregung der Vibrationsschwingung sehr ineffizient ist. Metallische optische Nanoantennen sind resonant zu einfallendem Licht und erzeugen hohe Nahfelder in ihrer direkten Umgebung. Diese erzeugten hohen Intensitäten ermöglichen es, einige wenige Moleküle oder sogar einzelne Moleküle mit Hilfe spektroskopischer Methoden sichtbar zu machen.

Aufgrund ihres Fingerabdrucks können die Moleküle auch eindeutig identifiziert werden. Dies spielt eine entscheidende Rolle in der Früherkennung von Krankheiten, in der hoch-sensitiven Detektion von schädlichen Substanzen und bei gefährlichen Konzentrationen von explosiven Gasgemischen.

Die Stuttgarter Forscher schafften es nun, wenige Moleküle neben Gold-Nanoantennen zu platzieren. Mit ihrer Technologie, die auf Elektronenstrahllithographie basiert, erreichten sie nanometergenaue Positionierung der Moleküle an verschiedene Stellen der Nanoantenne. Aufgrund der großen Nahfelder an der Nanoantenne wurde die Schwingungsanregung in den Molekülen um Größenordnungen effizienter und konnte mit konventioneller Spektroskopie sichtbar gemacht werden.

Zum ersten Mal konnte so experimentell der physikalische Prozess der Schwingungsanregung auf der Nanometerskala identifiziert werden. Konkret fand die Forschergruppe heraus, dass die Effizienz der Schwingungsanregung direkt mit den von den Antennen generierten Nahfeldintensitäten skaliert.

Mit dieser Erkenntnis entwickelten die Forscher eine Methode, um Nahfelder von optischen Antennen quantitativ zu messen. Die Auflösungsbegrenzung von konventioneller Mikroskopie konnte hier umgangen werden, da das Detektionsvolumen, in dem sich die Moleküle befinden, um ein Vielfaches kleiner als die Wellenlänge ist. Im Vergleich zu bestehenden Mikroskopie-Techniken im optischen Nahfeld, die ebenfalls Auflösungen kleiner als die Wellenlänge erzielen, hat die Methode der Stuttgarter Physiker den einzigartigen Vorteil, Nahfeldverteilungen von dreidimensionalen Antennenstrukturen zu messen.

Hierbei gelang es Daniel Dregely, während des Fabrikationsprozesses einer dreidimensionalen Antennenstruktur Moleküle an definierte Stellen einzubringen und die Schwingungsanregung und somit ihre Nahfeldintensität zu messen. Solche komplexe Nanostrukturen liefern einen weiteren Freiheitsgrad, um die Wechselwirkung im Nanometerbereich von Licht mit einzelnen Molekülen zu erhöhen. Es ist ganz wesentlich, die Nahfeldverteilung genau zu kennen, um neuartige, hoch-sensitive Sensorik-Platformen, zu entwickeln.

*) Referenz: D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures”, Nature Communications (2013). http://www.nature.com/naturecommunications

Kontakt:
Prof. Harald Giessen, Universität Stuttgart, 4. Physikalisches Institut,
Tel. 0711/685-65111, E-Mail: giessen (at) physik.uni-stuttgart.de
oder
Dipl.-Phys. Daniel Dregely, Universität Stuttgart, 4. Physikalisches Institut, Tel. 0711/685-64961, E-Mail: d.dregely (at) physik.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de
http://www.nature.com/naturecommunications

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie