Stuttgarter Physiker erforschen optische Nanoantennen-Felder

Rasterelektronenmikroskop-Aufnahme eines dreidimensionalen optischen Yagi-Uda-Nanoantennenfeldes. Universität Stuttgart, 4. Physikalisches Institut<br>

Eine Standard-TV-Antenne empfängt Signale, die mit elektromagnetischen Frequenzen im Megahertz-Bereich übertragen werden und konvertiert sie zu elektrischen Pulsen im Stromkabel. Hierbei werden durch die Antenne verschiedene Größenskalen miteinander verknüpft: Die Übertragungswellenlänge liegt im Bereich von Zentimetern bis Meter, während die Größe einer elektrischen Leitung im Millimeter-Bereich liegt.

Physikern am 4. Physikalischen Institut der Universität Stuttgart unter der Leitung von Prof. Harald Giessen ist es jetzt gemeinsam mit Kollegen am Max Planck Institut für Festkörperforschung gelungen, dieses Konzept aus der Antennentheorie auf das Gebiet der Nano-Optik zu übertragen. Sie realisierten etwa 100 Nanometer große metallische Strukturen, die effizient optische Frequenzen im Bereich von mehreren hundert Terahertz empfangen, und eröffnen damit neue Möglichkeiten für die schnelle Datenübertragung. Darüber berichtet das Magazin Nature Communications in seiner aktuellen Ausgabe.*)

Spezielle Antennen-Geometrien können Strahlung aus bestimmten Richtungen bevorzugen. Eine solche nach einer Richtung orientierte TV-Antenne ist die Yagi-Uda-Antenne, deren Konzept für Radio- und Radarsignale bereits 1926 realisiert wurde. Diese Antenne, die aus einer parallelen Anordnung von unterschiedlich langen Stabantennen besteht, kann Signale aus einer ausgewiesenen Richtung fünf bis zehn Mal effizienter empfangen als eine einfache Stabantenne. Sind mehrere Yagi-Uda-Antennen in einem Antennenfeld angeordnet, verstärkt sich das empfangene Signal zusätzlich um ein Vielfaches. Solche Antennenfelder werden für die Signalübertragung über sehr große Distanzen eingesetzt, zum Beispiel für die Kommunikation mit Satelliten.

Die Stuttgarter Wissenschaftler ließen sich von dieser hoch effizienten Signalübertragung aus der Nachrichtentechnik inspirieren und skalierten das Konzept von Yagi-Uda-Antennenfeldern zu optischen Wellenlängen. Hierzu stellte Doktorand Daniel Dregely winzige, nur etwa 100 Nanometer große Golddrähte unterschiedlicher Länge her, die er nanometergenau übereinander anordnete. Dazwischen brachte er Abstandsschichten mit glasähnlichen Eigenschaften ein. Diese dreidimensionalen einzelnen Nano-Yagi-Uda-Antennen ordnete er periodisch in Antennenfeldern an.

Wie sich herausstellte, hängt die vom Antennenfeld absorbierte Energie stark vom Einfallswinkel und von der Frequenz der eingestrahlten elektromagnetischen Welle ab. Die Forscher zeigten, dass eine einfallende Welle mit Schwingungsfrequenz um 200 THz maximal absorbiert wird, wenn ihre Einfallsrichtung mit der ausgewiesenen Antennenachse der einzelnen Yagi-Uda-Antennen übereinstimmt. Bei dieser Frequenz und Einfallsrichtung wird die 1.500 Nanometer lange Welle auf einen Bereich gebündelt, der nur etwa 100 nm groß ist. Dies kann in Zukunft für die Realisierung von hochempfindlichen Detektoren im Nahinfrarotbereich genutzt werden.

Die Wissenschaftler, die zusammen im Forschungszentrum SCoPE (Stuttgart Center of Photonics Engineering) arbeiten, zeigten außerdem mit Hilfe von numerischen Berechnungen, dass diese optischen Antennenfelder auch als effiziente Sender arbeiten. Über eine phasengesteuerte Anregung der einzelnen Nano-Yagi-Uda-Antennen im Feld kann die Abstrahlungsrichtung optischer Wellenlängen präzise eingestellt werden. Die Forscher versprechen sich dadurch die Realisierung eines „phased arrays“ für optische Wellenlängen und somit völlig neuartige Möglichkeiten der optischen Datenübertragung im Mikrometerbereich, zum Beispiel auf Platinen in Hochgeschwindigkeitsrechnern oder auf Mikrochips.

*) Daniel Dregely, Richard Taubert, Jens Dorfmüller, Ralf Vogelgesang, Klaus Kern, and Harald Giessen: “3D optical Yagi-Uda nanoantenna array“,

DOI: http://dx.doi.org/10.1038/ncomms1268

Weitere Informationen und Bilder unter
http://www.pi4.uni-stuttgart.de sowie bei
Prof. Harald Giessen, 4. Physikalisches Institut, Tel. 0711/685-65111,
e-mail giessen@physik.uni-stuttgart.de oder
Daniel Dregely, 4. Physikalisches Institut, Tel. 0711/685-64961, e-mail d.dregely@physik.uni-stuttgart.de

Media Contact

Andrea Mayer-Grenu idw

Weitere Informationen:

http://www.uni-stuttgart.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer