Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stuttgarter Physiker entdecken Überraschung in Meteoritenreste

13.12.2013
Diamanten aus dem All

Diamanten lieben es extrem: Für die Entstehung des Kohlenstoffgitters, das ihnen ihre ungewöhnlichen Eigenschaften verleiht, sind sehr hohe Temperaturen und Drücke erforderlich.

Auf der Erde findet man diese Bedingungen nur tief im Erdinneren, ergiebige Fundstätten sind daher selten. Im Weltraum dagegen trifft man die zur Bildung von Diamanten geeigneten Extrembedingungen häufig an. Wissenschaftler der Universität Stuttgart haben nun Diamanten untersucht, die unter interstellaren Bedingungen gebildet wurden – und fanden dort zu ihrer Überraschung Nanodiamanten, die nur etwa 500 Kohlenstoffatome umfassen. Das macht die Edelsteine für die medizinische Forschung besonders interessant.

In Zusammenarbeit mit einem russischen Wissenschaftlerteam untersuchten Dr. Sang-Yun Lee und Torsten Rendler vom 3. Physikalischen Institut der Universität Stuttgart (Leitung Prof. Jörg Wrachtrup) Überreste von Meteoriten, die in Sibirien gefunden wurden. „Es war bekannt, dass die Meteoriten Diamanten enthalten. Allerdings waren wir von deren Größe und physikalischen Eigenschaften überrascht“, erklärten die Stuttgarter Physiker. Während nämlich für die meisten Menschen große Diamanten interessant sind, suchen die Wissenschaftler nach besonders kleinen Steinen. So haben Studien gezeigt, dass Nanodiamanten die Wirksamkeit von bestimmten Medikamenten, die beispielsweise in der Tumortherapie eingesetzt werden, signifikant steigern.

Zudem enthalten Diamant-Partikel oft auch atomare Verunreinigungen, die zu einer charakteristischen Verfärbung wie grün, violett oder gelb führen und deswegen auch Farbzentren genannt werden. Nanoskopische Diamant-Partikel, die derartige Farbzentren enthalten, werden in der diagnostischen Medizin zur gezielten Markierung von Zellen oder Biomolekülen verwendet. Einige Farbzentren sind sogar in der Lage, kleinste magnetische Felder in ihrer direkten Umgebung zu detektieren, was in Zukunft auch das direkte Auflösen biologischer Strukturen auf atomarer Ebene ermöglichen soll.

Je kleiner, desto spannender

Dabei gilt allgemein der Grundsatz: Je kleiner der Nano-Diamant, desto interessanter sind sie für die Wissenschaftler. Allerdings sind besonders kleine Nanodiamanten auch besonders schwer herzustellen. „Bisher haben wir kleine Diamanten durch Zermahlen großer Steine hergestellt. Das Verfahren ist aufgrund der bekannten Härte von Diamant sehr aufwendig, und selbst die kleinsten Diamanten, die wir herstellen konnten, waren für medizinische Anwendungen immer noch zu groß“, erklärt Torsten Rendler. Damit die Diamanten von Zellen sehr gut aufgenommen werden, sollten sie die gleiche Größe wir zum Beispiel Proteine haben.“

Die Forscher machten eine weitere überraschende Entdeckung. Fremdatome, die in den Nanodiamanten eingeschlossen sind, erweisen sich wider Erwarten als besonders stabil. Während nur wenig größere Diamanten Fremdatome ausstoßen, gilt dies für die kleinen Nanodiamanten nicht. Für die Forscher ist das eine gute Nachricht: Die Fremdatome verleihen den Nanodiamanten nämlich ihre besonderen Eigenschaften, die sie für viele Anwendungen erst interessant machen.

Ein Problem freilich ist mit den Methoden der Wissenschaft erst einmal nicht zu lösen: Es erreichen viel zu wenige Meteoriten die Erde, um die darin eingeschlossenen Nanodiamanten nutzbar zu machen. Stattdessen arbeiten die Forscher bereits an einer Methode, um die Wachstumsbedingungen im Meteoriten auf seiner langen Reise durch das All nachzuahmen.

Weitere Informationen:
Prof. Jörg Wrachtrup, Dr. Sang-Yun Lee, Torsten Rendler, Universität Stuttgart, 3. Physikalisches Institut, Tel. 0711/685- 65277, E-Mail: j.wrachtrup (at) physik.uni-stuttgart.de
Andrea Mayer-Grenu, Universität Stuttgart, Abt. Hochschulkommunikation, Tel. 0711/685-82176,

E-Mail: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Originalpublikation: Igor I. Vlasov, Andrey A. Shiryaev, Torsten Rendler, Steffen Steinert, Sang-Yun Lee, Denis Antonov, Márton Vörös, Fedor Jelezko, Anatolii V. Fisenko, Lubov F. Semjonova, Johannes Biskupek, Ute Kaiser, Oleg I. Lebedev, Ilmo Sildos, Philip. R. Hemmer, Vitaly I. Konov, Adam Gali and Jörg Wrachtrup: Molecular-sized fluorescent nanodiamonds, Nature Nanotechnology, DOI: 10.1038/NNANO.2013.255, http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2013.255.html

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de
http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2013.255.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ein Hauch von Galaxien im Zentrum eines gigantischen Galaxienhaufens
21.08.2017 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik