Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stuttgarter Physiker detektieren Farbstoffzentren im Nanometerbereich

02.10.2008
Erster Schritt zu extrem präzisen Bildern
Diamanten enthalten natürliche Defekte ihrer Kristallstruktur, die man als
Farbstoffzentren bezeichnet.
Physiker des 3. Physikalischen Instituts der Universität Stuttgart, der Universitäten Konstanz und Kiel sowie Kollegen aus Massachusetts und Texas verwendeten erstmals einzelne Elektronenspins dieser Farbstoffzentren für die Bildgebung mit hoher örtlicher Auflösung sowie für ein hochempfindliches Messverfahren. Die Zeitschrift Nature berichtet darüber in ihrer Ausgabe vom 2. Oktober.*)

Die Elektronenspins in diesen Farbstoffzentren besitzen einzigartige Eigenschaften, die mit Licht gemessen und verändert werden können. Die Forschergruppe konnte in diesen Spins nun erfolgreich einzelne Farbstoffzentren mit einer örtlichen Genauigkeit im Nanometerbereich detektieren. Damit sind ihnen die ersten Schritte hin zu einem neuen, hoch empfindlichen Bildgebungsverfahren gelungen.

Die Wissenschaftler schlagen vor, dass nanometergroße Diamantkristalle mit einzelnen Farbstoffzentren als Marker in bildgebenden Magnetresonanzverfahren (MRI) eingesetzt werden könnten. Eine weitere Anwendungsmöglichkeit liegt in der Detektion äußerer Magnetfelder mit einer Empfindlichkeit, die ausreichend ist, um einzelne Kernspins bei Raumtemperatur zu detektieren. Dies könnte - im erfolgreichen Fall - zur Auflösung der Struktur einzelner Proteine führen.

Da das Verfahren auch bei Raumtemperatur funktioniert, versprechen sich die Wissenschaftler ein breites Spektrum an künftigen Anwendungen in den Bereichen Biologie und Medizin. So sollen die neuen Aufnahmetechniken beispielsweise bis zur Strukturanalyse von Proteinen erweitert werden. Die Forschungsarbeiten wurden von der Europäischen Union, der Deutschen Forschungsgemeinschaft (DFG) sowie der Landesstiftung Baden-Württemberg mit insgesamt rund 1,6 Millionen Euro auf drei Jahre unterstützt.

*) Gopalakrishnan Balasubramanian, I.Y. Chan, Roman Kolesov, Mohannad Al-Hmoud, Julia Tisler, Chang Shin, Changdong Kim, Aleksander Wojcik, Philip R. Hemmer, Anke Krueger, Tobias Hanke, Alfred Leitenstorfer, Rudolf Bratschitsch, Fedor Jelezko und Jörg Wrachtrup: Nanoscale imaging magnetometry with diamond spins under ambient conditions, Nature, 2 October 2008, Vol. 455, Issue 7213, doi10.1038/nature07278, http://www.nature.com

Weitere Informationen bei Prof. Jörg Wrachtrup, 3. Physikalisches Institut,
Tel. 0711/685-65278, e-mail: wrachtrup@physik.uni-stuttgart.de, sowie bei Dr. Fedor Jelezko, Tel. 0711/685- 65276, e-mail: f.jelezko@physik.uni-stuttgart.de

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de/
http://www.nature.com

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie