Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stickstoff-Fehlstellenzentren in Diamanten: Strompulse kurbeln die Photonenproduktion an

02.05.2012
Photonenquellen, die nach äußerer Anregung einzelne Lichtteilchen produzieren, finden in der Quanteninformations- oder Messtechnik vermehrt Anwendung. Besonders Stickstoff-Fehlstellenzentren in extrem reinen, künstlich hergestellten Diamanten haben sich als „Photonen-Fabriken“ etabliert.
Um einzelne Lichtteilchen (Photonen) zu erzeugen, werden Stickstoff-Fehlstellenzentren bisher per Laser angeregt. Jetzt haben Wissenschaftler um Professor Norikazu Mizuochi (Universität Osaka), Professor Fedor Jelezko von der Universität Ulm und den Leibniz-Preisträger Professor Jörg Wrachtrup (Universität Stuttgart) einen Weg gefunden, um die Produktion mit Strompulsen in die Wege zu leiten.

„Die bisher gängige, laserbasierte Methode funktioniert hauptsächlich unter Laborbedingungen“, erklärt Fedor Jelezko. Im Gegensatz dazu seien Strompulse verhältnismäßig unproblematisch auszulösen. Die nanostrukturierten Diamanten könnten wohl künftig in Mikrochips integriert werden. Der Fachbeitrag „Electrically driven single-photon source at room temperature in diamond“ ist in der Online-Ausgabe des renommierten Journals Nature Photonics erschienen.

Verglichen mit alternativen Photonenquellen wie etwa Quantenpunkten auf einem Halbleiteruntergrund, haben die Stickstoff-Fehlstellenzentren einen entscheidenden Vorteil: Sie können bei Raumtemperatur zur Lichtteilchenproduktion angeregt werden.
Um das neue, auf Strompulsen fußende Verfahren möglich zu machen, galt es allerdings zunächst, eine Lösung für ein grundlegendes Problem zu finden: Bisher verwendete künstliche Diamanten haben keine Ladungsträger, die Elektronen aufnehmen können. Per Nanofabrikation haben die beteiligten Forscher von der Universität Osaka deshalb spezielle Edelsteine gezüchtet: „Die japanischen Kollegen haben die herausfordernde Aufgabe gemeistert, mit Bor und Phosphor dotierte Diamanten durch ein Beschichtungsverfahren, genannt ,chemical vapour deposition ‘, herzustellen“, erklärt Jelezko..
Mit selbstgebauten, hochauflösenden Mikroskopen konnte die internationale Forschergruppe dann die Zentren der gezüchteten Diamanten ausfindig machen und elektrisch gezielt anregen.

Photonen sind Bestandteile der elektromagnetischen Strahlung. Einzelne Lichtteilchen werden zum Beispiel in der Quantenkryptographie zur abhörsicheren Übertragung von Nachrichten per Photonenschlüssel benötigt. Außerdem könnten die Teilchen als so genannte Qubits zur Informationsspeicherung in künftigen Quantencomputern eingesetzt werden. Weitere Anwendungsbereiche ergeben sich etwa in der Sensorik. „In Zusammenarbeit mit Ingenieuren werden wir jetzt an einer Miniaturisierung des neuen Diamanten-Systems zur Integration in Mikrochips arbeiten“, sagt Jelezko.

Fedor Jelezko, Leiter des Instituts für Quantenoptik an der Uni Ulm, und Jörg Wrachtrup (Leiter des 3. Physikalischen Instituts, Universität Stuttgart) gelten als führende Experten für die Anwendung von Diamanten in der Quantenwissenschaft. Gemeinsam mit Budapester Wissenschaftlern waren die Physiker Ideengeber des Projekts. Alle Experimente sind im japanischen Osaka durchgeführt worden.
Die Publikation in Nature Photonics ist im Kontext des Zentrums für Integrierte Quantenwissenschaft und Technologie (IQST) zu sehen. In diesem Zentrum forschen Wissenschaftler der Universitäten Ulm und Stuttgart sowie des Max-Planck-Instituts für Festkörperforschung (Stuttgart) zur Fragestellungen der Quantenwissenschaft. Dabei soll die Zusammenarbeit von Physik, Chemie, Biologie, Mathematik und etwa Elektrotechnik gestärkt werden.

Weitere Informationen: Prof. Dr. Fedor Jelezko, Tel.: 0731 50-23750

N. Mizuochi, t. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup and S. Yamasaki. „Electrically driven single-photon source at room temperature in diamond”. Nature Photonics. doi:10.1038/nphoton.2012.75

Annika Bingmann | idw
Weitere Informationen:
http://www.uni-ulm.de/
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2012.75.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics