Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stickstoff-Fehlstellenzentren in Diamanten: Strompulse kurbeln die Photonenproduktion an

02.05.2012
Photonenquellen, die nach äußerer Anregung einzelne Lichtteilchen produzieren, finden in der Quanteninformations- oder Messtechnik vermehrt Anwendung. Besonders Stickstoff-Fehlstellenzentren in extrem reinen, künstlich hergestellten Diamanten haben sich als „Photonen-Fabriken“ etabliert.
Um einzelne Lichtteilchen (Photonen) zu erzeugen, werden Stickstoff-Fehlstellenzentren bisher per Laser angeregt. Jetzt haben Wissenschaftler um Professor Norikazu Mizuochi (Universität Osaka), Professor Fedor Jelezko von der Universität Ulm und den Leibniz-Preisträger Professor Jörg Wrachtrup (Universität Stuttgart) einen Weg gefunden, um die Produktion mit Strompulsen in die Wege zu leiten.

„Die bisher gängige, laserbasierte Methode funktioniert hauptsächlich unter Laborbedingungen“, erklärt Fedor Jelezko. Im Gegensatz dazu seien Strompulse verhältnismäßig unproblematisch auszulösen. Die nanostrukturierten Diamanten könnten wohl künftig in Mikrochips integriert werden. Der Fachbeitrag „Electrically driven single-photon source at room temperature in diamond“ ist in der Online-Ausgabe des renommierten Journals Nature Photonics erschienen.

Verglichen mit alternativen Photonenquellen wie etwa Quantenpunkten auf einem Halbleiteruntergrund, haben die Stickstoff-Fehlstellenzentren einen entscheidenden Vorteil: Sie können bei Raumtemperatur zur Lichtteilchenproduktion angeregt werden.
Um das neue, auf Strompulsen fußende Verfahren möglich zu machen, galt es allerdings zunächst, eine Lösung für ein grundlegendes Problem zu finden: Bisher verwendete künstliche Diamanten haben keine Ladungsträger, die Elektronen aufnehmen können. Per Nanofabrikation haben die beteiligten Forscher von der Universität Osaka deshalb spezielle Edelsteine gezüchtet: „Die japanischen Kollegen haben die herausfordernde Aufgabe gemeistert, mit Bor und Phosphor dotierte Diamanten durch ein Beschichtungsverfahren, genannt ,chemical vapour deposition ‘, herzustellen“, erklärt Jelezko..
Mit selbstgebauten, hochauflösenden Mikroskopen konnte die internationale Forschergruppe dann die Zentren der gezüchteten Diamanten ausfindig machen und elektrisch gezielt anregen.

Photonen sind Bestandteile der elektromagnetischen Strahlung. Einzelne Lichtteilchen werden zum Beispiel in der Quantenkryptographie zur abhörsicheren Übertragung von Nachrichten per Photonenschlüssel benötigt. Außerdem könnten die Teilchen als so genannte Qubits zur Informationsspeicherung in künftigen Quantencomputern eingesetzt werden. Weitere Anwendungsbereiche ergeben sich etwa in der Sensorik. „In Zusammenarbeit mit Ingenieuren werden wir jetzt an einer Miniaturisierung des neuen Diamanten-Systems zur Integration in Mikrochips arbeiten“, sagt Jelezko.

Fedor Jelezko, Leiter des Instituts für Quantenoptik an der Uni Ulm, und Jörg Wrachtrup (Leiter des 3. Physikalischen Instituts, Universität Stuttgart) gelten als führende Experten für die Anwendung von Diamanten in der Quantenwissenschaft. Gemeinsam mit Budapester Wissenschaftlern waren die Physiker Ideengeber des Projekts. Alle Experimente sind im japanischen Osaka durchgeführt worden.
Die Publikation in Nature Photonics ist im Kontext des Zentrums für Integrierte Quantenwissenschaft und Technologie (IQST) zu sehen. In diesem Zentrum forschen Wissenschaftler der Universitäten Ulm und Stuttgart sowie des Max-Planck-Instituts für Festkörperforschung (Stuttgart) zur Fragestellungen der Quantenwissenschaft. Dabei soll die Zusammenarbeit von Physik, Chemie, Biologie, Mathematik und etwa Elektrotechnik gestärkt werden.

Weitere Informationen: Prof. Dr. Fedor Jelezko, Tel.: 0731 50-23750

N. Mizuochi, t. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup and S. Yamasaki. „Electrically driven single-photon source at room temperature in diamond”. Nature Photonics. doi:10.1038/nphoton.2012.75

Annika Bingmann | idw
Weitere Informationen:
http://www.uni-ulm.de/
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2012.75.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie