Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Sternwarte über den Wolken

16.09.2011
Flugzeug-Observatorium Sofia eröffnet Astronomen ein neues Fenster ins All

Wer nach den Sternen greifen möchte, muss abheben. So könnte das Motto von Sofia lauten, einem zum Observatorium umgebauten Jumbo-Jet. Er trägt ein 2,7-Meter-Teleskop an Bord, mit dem die Forscher in einer Flughöhe von 15 Kilometern jenseits der störenden Atmosphäre die Geburtsstätten ferner Sonnen, galaktische Molekülwolken oder die Hüllen von Planeten im Infraroten beobachten.


Sofia während des ersten Testflugs mit vollständig geöffneter Teleskoptür am 18. Dezember 2009 über der kalifornischen Mojave-Wüste. In der Öffnung im Rumpf der Boeing 747SP wird das in Deutschland gebaute 2,7 Meter-Teleskop sichtbar. © NASA/C. Thomas

Thomas Wenn man in einer sternklaren Nacht zum Himmel blickt, sieht man lediglich eine einzige Oktav in der gewaltigen Klaviatur des Kosmos. Zum einen nehmen unsere Augen nur das sichtbare Licht wahr, zum anderen blockiert die Erdatmosphäre einen Großteil der Strahlung aus dem Weltall, etwa Gamma-, Röntgen- oder Infrarotlicht. In diesen Spektralbereichen erscheinen explodierte Sonnen, junge Planetensysteme oder die Kerne ferner Galaxien aber besonders interessant. Daher arbeiten die Astronomen mit einer Armada von Satelliten-Teleskopen oberhalb der irdischen Dunstglocke. Und vor kurzem haben sie auch noch direkt über den Wolken einen Beobachtungsposten eröffnet: Sofia.

Der Name der fliegenden Sternwarte bedeutet Stratosphären-Observatorium für Infrarot-Astronomie. Sofia befindet sich an Bord eines umgebauten Jumbo-Jets vom Typ Boing 747SP und verfügt über ein Teleskop mit 2,7 Meter Spiegeldurchmesser. Das Riesenauge mustert das Universum im infraroten Spektralbereich aus 12 bis 15 Kilometern Höhe. Dort, jenseits der Troposphäre, lässt Sofia praktisch den gesamten Wasserdampf unter sich, der das langwellige Licht aus dem All ansonsten verschluckt.

Das Teleskop ist im Heck des Jumbos montiert und von der Kabine hermetisch abgeschottet. Einmal auf Flughöhe, gleiten Türen im Rumpf auseinander und das Instrument beobachtet im Freien, unter niedrigem Druck und Außentemperaturen um die minus 60 Grad. Der rund 800 Kilogramm schwere Primärspiegel mit den oben erwähnten 2,7 Meter Durchmesser fängt die Strahlung aus dem Weltall auf und wirft sie auf den kleineren Sekundärspiegel, der sie bündelt und zu einem Tertiärspiegel schickt; dieser leitet sie schließlich zur Bildebene des angeschlossenen wissenschaftlichen Instruments.

Als erstes von neun Instrumenten der „First-Light-Generation“ kam die von der US-amerikanischen Cornell University entwickelte Infrarotkamera Forcast zum Einsatz. Anfang April schlug dann die Stunde für den deutschen Beitrag Great. Dieses Spektrometer mustert das Universum im Ferninfrarot-Bereich bei Wellenlängen zwischen 60 und 250 Mikrometer, die aufgrund der Wasserdampfabsorption in der Atmosphäre vom Erdboden aus nicht zugänglich sind.

Als Sofia am 6. April 2011 um 6.40 Uhr lokaler Zeit auf der Piste der Dryden Aircraft Operations Facility im kalifornischen Palmdale aufsetzt, begann eine neue Ära der beobachtenden Astronomie: „Schon die ersten Spektren zeigen das herausragende wissenschaftliche Potenzial der luftgestützten Ferninfrarot-Spektroskopie“, freute sich Great-Projektleiter Rolf Güsten, Wissenschaftler am Bonner Max-Planck-Institut für Radioastronomie, nach dem Jungfernflug. Die große Sammelfläche des Teleskops, gepaart mit enormen Fortschritten der Terahertz-Technologien während der vergangenen Jahre, lasse Great 100-fach schneller Daten erfassen als in früheren Experimenten. „Das eröffnet den Weg für einzigartige wissenschaftliche Beobachtungen.“

Auf dem Programm damals standen die Molekülwolke M 17, eine Region mit verstärkter Sternentstehung in unserer Milchstraße, sowie die nur wenige Millionen Lichtjahre entfernte Galaxie IC 342. In beiden Quellen registrierte Great neben der Strahlung des ionisierten Kohlenstoffs bei einer Wellenlänge von 0,158 Millimeter auch Spektrallinien des warmen Kohlenmonoxids bei hoher Anregung. Diese Linien künden von atomaren Prozessen, die zu einer Kühlung des interstellaren Materials führen.

Das Gleichgewicht zwischen Heizungs- und Kühlungsprozessen wiederum reguliert die Temperatur des interstellaren Mediums und damit auch die Ausgangsbedingungen für die Entstehung von neuen Sternen. Derartige Prozesse laufen bei tiefen Temperaturen – weit unter minus 200 Grad Celsius – ab und lassen sich daher nur im Infraroten verfolgen. Daher steht die Geburt von Sternen und Planeten im Fokus der Forscher. Solche kosmischen Kreißsäle werden sich mit Sofia in unserer Milchstraße, aber auch in benachbarten Galaxien in bisher unerreichter Genauigkeit durchmustern lassen.

Um Höchstleistungen zu bringen, muss das Observatorium in absoluter Ruhe sein, selbst die geringsten Erschütterungen würden jede Messung zunichte machen. So entwickelten die Ingenieure ein Isolationssystem gegen Vibrationen, das aus Luftfedern, Silicon-gefüllten Dämpfungsgliedern und einer anspruchsvollen Regelelektronik besteht. Dadurch sind Flugzeug und Teleskop mechanisch voneinander entkoppelt.

Im Bereich vor dem Druckschott und zwischen den Flügeln befinden sich die Arbeitsplätze der Astronomen. Und statt der 1. Klasse gibt es Räume für Gastbeobachter sowie Lehrer, Schüler oder Journalisten. So etwa waren in der Nacht zum 15. Juli erstmals zwei deutsche Lehrer mit an Bord. Wolfgang Viesser vom Christoph-Probst-Gymnasium in München und Jörg Trebs von der Thomas-Mann-Oberschule in Berlin durften hautnah miterleben, als die Wissenschaftler mit Great den gerade entstehenden Stern L1157 in der Konstellation Drache unter die Lupe nahmen.

Stationiert ist der Jumbo-Jet in Palmdale bei Los Angeles. Sofia wird aber auch vom neuseeländischen Christchurch und vom Flughafen Stuttgart aus zu kosmischen Exkursionen starten.

Projektpartner

Sofia

Das Stratosphären-Observatorium für Infrarot-Astronomie ist ein Gemeinschaftsprojekt des Deutschen Zentrums für Luft- und Raumfahrt (DLR) und der US-amerikanischen Raumfahrtbehörde Nasa. Es wird auf deutscher Seite finanziert aus Mitteln des Bundesministeriums für Wirtschaft und Technologie sowie des Landes Baden-Württemberg und der Universität Stuttgart. An dieser Hochschule ist auch das Deutsche Sofia Institut (DSI) angesiedelt, das den wissenschaftlichen Betrieb auf deutscher Seite koordiniert, zuständig auf amerikanischer Seite ist die Universities Space Research Association (Usra). Sofias Kernstück, das 2,7-Meter-Teleskop, wurde im Auftrag des DLR gebaut.

Great

Den German Receiver for Astronomy at Terahertz Frequencies haben Wissenschaftler des Max-Planck-Instituts für Radioastronomie und der Universität zu Köln entwickelt, in Zusammenarbeit mit Kollegen aus dem Max-Planck-Institut für Sonnensystemforschung und dem DLR-Institut für Planetenforschung. Finanziert haben das Instrument neben den beteiligten Instituten die Max-Planck-Gesellschaft, die Deutsche Forschungsgemeinschaft (DFG) sowie das DLR.

Ansprechpartner
Dr. Rolf Güsten
Max-Planck-Institut für Radioastronomie, Bonn
Telefon: +49 228 525-383
E-Mail: rguesten@mpifr-bonn.mpg.de
Dr. Norbert Junkes
Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn
Telefon: +49 228 525-399
E-Mail: njunkes@mpifr-bonn.mpg.de
Dr. Birgit Krummheuer
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Telefon: +49 5556 979-462
E-Mail: Krummheuer@mps.mpg.de

Dr. Rolf Güsten | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4421773/sofia

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spin-Strom aus Wärme: Neues Material für höhere Effizienz
20.11.2017 | Universität Bielefeld

nachricht cw-Wert wie ein Lkw: FH Aachen testet Weihnachtsbaum im Windkanal
20.11.2017 | FH Aachen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie