Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Stern, den es gar nicht geben dürfte

01.09.2011
Astronomen beobachten 13 Milliarden Jahre alten Stern mit ungewöhnlicher chemischer Zusammensetzung

Ein Team europäischer Astronomen unter Leitung einer Wissenschaftlerin der Universität Heidelberg hat einen Stern ausfindig gemacht, der nach herkömmlichem astronomischen Verständnis gar nicht existieren dürfte, da dieser nahezu ausschließlich aus Wasserstoff und Helium besteht und nur winzige Spuren anderer Elemente enthält.


Ein Stern, den es gar nicht geben dürfte: Ein Team europäischer Astronomen hat den lichtschwachen und extrem metallarmen Stern SDSS J102915+172927 untersucht. Er muss aus der Frühzeit des Universums stammen und ist vermutlich mehr als 13 Milliarden Jahren alt.
Bildnachweis: ESO/Digitized Sky Survey 2

Mit dieser ungewöhnlichen chemischen Zusammensetzung fällt der Stern, der aus der Frühzeit des Universums stammt, in eine Art „verbotene Zone“ der gängigen Theorie der Sternentstehung: „Danach hätte er eigentlich gar nicht erst entstehen können“, betont Dr. Elisabetta Caffau vom Zentrum für Astronomie der Universität Heidelberg (ZAH). Die Ergebnisse der Forschungen, bei denen das Very Large Telescope der Europäischen Südsternwarte (ESO) zum Einsatz kam, werden am 1. September 2011 in „Nature“ veröffentlicht.

Der extrem lichtschwache Stern im Sternbild Leo trägt die sperrige Bezeichnung „SDSS J102915+172927“. Er wurde im Rahmen des „Sloan Digital Sky Survey“ (SDSS), einem internationalen Projekt zur Durchmusterung bestimmter Bereiche des Himmels mit Hilfe von Spektrallinien, katalogisiert. Die Ziffern in seiner Bezeichnung entsprechen seinen Koordinaten am Himmel. Der Stern hat eine etwas geringere Masse als die Sonne und ist vermutlich mehr als 13 Milliarden Jahre alt. Nach den Beobachtungen des europäischen Wissenschaftlerteams beinhaltet SDSS J102915+172927 im Vergleich zu allen bislang untersuchten Sternen den geringsten Anteil an chemischen Elementen, die schwerer als Helium sind.

Die Eigenschaften des Sterns wurden mit Hilfe der beiden Spektrografen X-Shooter und UVES am Very Large Telescope (VLT) der ESO in Chile untersucht. Damit kann das Licht von Himmelskörpern in seine Farbbestandteile zerlegt werden. Die Spektralanalyse, die Mitte des 19. Jahrhunderts von Gustav Kirchhoff und Robert Bunsen in Heidelberg entwickelt wurde, macht es möglich, die Häufigkeit verschiedener chemischer Elemente in der Atmosphäre von Sternen zu bestimmen. Auf diese Weise haben die Astronomen herausgefunden, dass der Gehalt von schweren Elementen in SDSS J102915+172927 rund 20.000 Mal geringer ist als in der Sonne. Die Wissenschaftler konnten bei der ersten Messung nur ein einziges chemisches Element schwerer als Helium – nämlich Kalzium – nachweisen. Erst mit zusätzlichen Beobachtungen gelang es den Forschern aus Deutschland, Frankreich und Italien, noch weitere Metalle aufzuspüren.

„Die allgemein akzeptierte Theorie besagt, dass Sterne wie dieser aufgrund ihrer geringen Masse und des extrem geringen Anteils an schweren Elementen gar nicht existieren sollten. Schon die Gas- und Staubwolken, aus denen ein solcher Stern entsteht, hätten sich nach dem gängigen astronomischen Verständnis gar nicht ausreichend verdichten können“, betont Dr. Caffau, die an der Landessternwarte Königstuhl am Zentrum für Astronomie der Universität Heidelberg forscht. „Zum ersten Mal wurde ein Stern in einer ,verbotenen Zone‘ der Sternentstehung entdeckt. Das war für uns eine große Überraschung. Nun werden die Astrophysiker einige ihrer Modelle für die Entstehung von Sternen überdenken müssen“, erläutert die Wissenschaftlerin, die Erstautorin der in „Nature“ veröffentlichten Studie ist.

Kosmologen gehen davon aus, dass die beiden leichtesten chemischen Elemente Wasserstoff und Helium zusammen mit Spuren von Lithium kurz nach dem Urknall entstanden sind. Nahezu alle anderen, schwereren Elemente sind erst viel später gebildet worden, entweder durch Fusionsprozesse im Inneren von Sternen oder bei Supernovaexplosionen am Ende eines Sternlebens. Nach der Explosion wird das metallreiche Material mit dem interstellaren Medium, der Materie im Raum zwischen den Sternen, vermischt. Aus diesem mit schweren Elementen angereicherten Material entsteht dann die nächste Sterngeneration. Diese neu entstandenen Sterne haben einen höheren Metallgehalt als die Generation zuvor. „Der Anteil an Metallen verrät daher auch, wie alt ein Stern ist, oder besser gesagt, wieviele Sterngenerationen das Material, aus dem er besteht, bereits durchlaufen hat“, erläutert Dr. Caffau. „Dass SDSS J102915+172927 so extrem metallarm ist, bedeutet, dass dieser Stern aus der Frühzeit des Universums stammen muss. Möglicherweise handelt es sich um einen der ältesten Sterne, der jemals gefunden wurde.“

Eine weitere Überraschung ist der Mangel an Lithium in SDSS J1072915+172927, denn ein so alter Stern sollte nach den Worten von Dr. Caffau in etwa dieselbe Elementzusammensetzung haben wie das Universum kurz nach dem Urknall. Der Lithiumanteil des Sterns ist jedoch fünfzig Mal geringer, als dies die Berechnungen zur kosmologischen Elemententstehung erwarten lassen würden. Für das europäische Forscherteam ist es bislang ein Rätsel, wie das Lithium, das sich zu Beginn des Universums gebildet haben muss, in diesem Stern zerstört wurde. Die Wissenschaftler sind dennoch überzeugt davon, dass der seltsame Stern nicht alleine ist: „Wir haben noch eine ganze Reihe von Kandidaten, die einen ähnlich geringen Metallgehalt haben könnten wie SDSS J102915+172927, vielleicht sogar einen noch geringeren. Deshalb wollen wir diese Sterne ebenfalls mit dem VLT überprüfen“, betont Dr. Caffau. Damit wollen sich die Astronomen Schritt für Schritt an die allererste Sterngeneration herantasten.

Informationen im Internet sind unter
http://www.lsw.uni-heidelberg.de/projects/galactic_archaeology abrufbar.
Originalveröffentlichung:
E. Caffau, P. Bonifacio, P. François, L. Sbordone, L. Monaco, M. Spite, F. Spite, H.-G. Ludwig, R. Cayrel, S. Zaggia, F. Hammer, S. Randich, P. Molaro, V. Hill: An extremely primitive halo star in the Galactic halo, Nature (1 September 2011)

Kontakt:

Dr. Guido Thimm
Zentrum für Astronomie der Universität Heidelberg (ZAH)
Telefon +49 6221 54 1805
thimm@ari.uni-heidelberg.de
Dr. Elisabetta Caffau
Zentrum für Astronomie der Universität Heidelberg (ZAH)
Telefon +49 6221 54 1787
e.caffau@lsw.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon +49 6221 54 19017
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise