Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der „Steckbrief“ von Neon wird genauer

22.07.2010
PTB-Forscher bestimmen die Polarisierbarkeit von Neon extrem genau – ihr Verfahren hilft theoretische Modelle zu überprüfen und nutzt auch bei anderen Elementen

Klein oder groß, schweigsam oder gesprächig – die grundlegenden Eigenschaften eines Menschen prägen sein Verhalten. Bei chemischen Elementen ist es im Prinzip nicht anders.

Und je besser der „Steckbrief“ eines Elementes bekannt ist, umso besser lässt sich auch sein Verhalten im praktischen Einsatz, etwa in der chemischen Industrie, verstehen und steuern. In den letzten Jahren sind solche „Steckbriefe“ immer öfter aufgrund von theoretischen Modellen entstanden.

Ob sie die Wirklichkeit auch gut abbilden, lässt sich jetzt mit einer Methode überprüfen, die nur in der metrologischen, also messtechnischen Spitzenforschung zu finden ist, in Deutschland in der Physikalisch-Technischen Bundesanstalt (PTB). Dort ist mit Hilfe der Dielektrizitätskonstanten-Gasthermometrie eine grundlegende Eigenschaft des Edelgases Neon, nämlich seine Polarisierbarkeit, präziser als je zuvor bestimmt worden.

Der ermittelte Wert zeigt, dass die letzen praktischen Messungen dieser Größe, die 40 Jahre zurück liegen, offenbar nicht so gut waren, neueste theoretische Modelle dagegen sehr gut passen. Die Ergebnisse der PTB-Physiker sind auf großes Interesse von Grundlagen-Chemikern gestoßen. Denn das Verfahren nutzt nicht nur in diesem speziellen Fall, sondern mit ihm lassen sich auch bei anderen grundlegenden Eigenschaften und auch bei anderen Elementen die entsprechenden theoretischen Modelle überprüfen. Daneben hat die experimentelle Bestimmung der Polarisierbarkeit von Neon auch eine große praktische Bedeutung für die Bestimmung einer Fundamentalkonstante, nämlich der Boltzmann-Konstante, die für die Thermodynamik von grundlegender Bedeutung ist.

Im Boltzmann-Projekt der PTB soll die bisherige Definition der Basiseinheit der Temperatur im Internationalen Einheitensystem (SI), Kelvin, auf eine noch solidere Grundlage gestellt werden. Zurzeit dient der sogenannte Tripelpunkt von Wasser, also jene Temperatur, bei der Wasser gleichzeitig fest, flüssig und gasförmig vorliegt, als Bezug. In ein paar Jahren könnte es eine Naturkonstante sein: die Boltzmann-Konstante. In ihrem Projekt setzen die PTB-Physiker die Dielektrizitätskonstanten-Gasthermometrie ein. Dabei wird die relative Kapazitätsänderung eines Kondensators durch das Messgas bestimmt. Eine Schlüsselrolle spielt dabei die Polarisierbarkeit des Messgases. Das ist bisher Helium, das als einzige Atomsorte eine Berechnung der Polarisierbarkeit auf dem notwendigen geringen Unsicherheitsniveau zulässt. Nach den neuesten Messungen an Neon, das eine höhere Polarisierbarkeit besitzt, haben die Physiker erstmals ein zweites Messgas zur Verfügung. Es ermöglicht unerlässliche Konsistenzchecks bei der Messung der Boltzmann-Konstante am Wassertripelpunkt.

Den Wissenschaftlern gelang die Messung der molaren statischen Polarisierbarkeit von Neon mit der bisher unerreichten relativen Unsicherheit von 0,00001. Neben der zentralen Bedeutung der Größe Polarisierbarkeit im Zusammenhang mit fundamentalen Wechselwirkungen, z. B. als Schlüsselgröße bei der sehr schwachen Van-der-Waals-Wechselwirkung, hat diese Bestimmung auch für die theoretische Chemie große Bedeutung. In den letzten Jahrzehnten hat sich die theoretische Berechnung physikalisch-chemischer Größen sehr rasch entwickelt. Dabei konnte sich eine große Zahl unterschiedlichster Berechnungsvarianten herausbilden. Eine Gruppe sehr leistungsstarker Methoden sind die sogenannten „Post-Hartree Fock“-Verfahren. Der neue Wert für die Polarisierbarkeit von Neon ermöglicht es nun, die unterschiedlichen Varianten zu vergleichen und ein objektives Kriterium für deren Güte zu bekommen.

Denn letztendlich entscheidet das Experiment, ob eine Theorie die Natur richtig beschreibt. Bei Neon liegt die letzte experimentelle Bestimmung der statischen Polarisierbarkeit allerdings schon über 40 Jahre zurück. Die Messungen in der PTB haben nun gezeigt, dass der erhaltene alte Wert deutlicher falscher ist, als nach der angegebenen Unsicherheit zu erwarten wäre. Im Gegensatz dazu zeigt der neue Wert der PTB eine nahezu perfekte Übereinstimmung mit neuesten theoretischen Werten. Die Messunsicherheit des Experimentes ist noch um fast zwei Größenordnungen geringer (also besser) als die der genauesten theoretischen Berechnungen.

Die Erfahrungen lassen sich auf andere Moleküle und andere physikalische Größen wie z. B. Wärmeleitfähigkeit und Viskosität übertragen.

Ansprechpartner:
Dr. Christof Gaiser, PTB-Arbeitsgruppe 7.43 Grundlagen der Thermometrie,
Tel. (030) 3481-7349, E-Mail: christof.gaiser@ptb.de
Originalveröffentlichung dazu:
Gaiser, C.; Fellmuth, B.: Experimental benchmark value for the molar polarizability of neon. EPL 90 (2010) 63002, 15.07.2010.

Erika Schow | idw
Weitere Informationen:
http://www.ptb.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten