Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Staubscheiben überleben kosmisches Feuerwerk junger Riesensterne

10.03.2015

Astronomen haben Staubscheiben um junge Sterne entdeckt, in Sternhaufen, die erst kürzlich nahe dem Zentrum der Milchstraße entstanden sind.

Weil junge Sternhaufen sehr heisse Sterne enthalten, die energiereiche UV-Strahlung erzeugen, wurde bisher angenommen, daß solche Staubscheiben rasch durch diese Strahlung zerstört würden. Staubscheiben um junge Sterne sind als zukünftige Geburtsstätten von Planetensystemen von Interesse.


Die Sternhaufen Arches- und Quintuplet-Haufen im Zentrum der Milchstraße: Hier befinden sich Staubscheiben, die Strahlung und Sternwinde überraschenderweise überlebt haben.

Bild: HST/Spitzer composite: NASA, ESA, D.Q.Wang (UMass), JPL, S. Stolovy (Spitzer Science Center)

Dass sie extreme Bedingungen länger überleben können als gedacht, liefert neue Hinweise, wann und wie Planeten entstanden sind. Vor allem im jungen Universum waren ähnlich extreme Bedingungen häufig, weil die Geburtsrate junger Sterne in Galaxien viel höher war.

Ein internationales Team von Astrophysikern unter der Leitung von Andrea Stolte vom Argelander-Institut der Universität Bonn, und unter Mitarbeit von Wolfgang Brandner, Max-Planck-Institut für Astronomie in Heidelberg, hat junge, helle Sterne in zwei Sternhaufen beobachtet, dem Arches- und dem Quintuplet-Haufen.

Diese Sternhaufen haben sich erst vor wenigen Millionen Jahren nahe dem Zentrum der Milchstraße gebildet, wo intensive Sternentstehung abläuft; sie zählen zu den jüngsten und massereichsten Sternhaufen in unserer Galaxie und beherbergen zehntausende junge Sterne.

"Unser Team hatte in der Vergangenheit kleinere Sternhaufen in gewöhnlichen Umgebungen untersucht, weiter außen in der Scheibe unserer Galaxie, entlang der Spiralarme", erklärt Wolfgang Brandner. "Wir hatten Staubscheiben um Sterne in diesen Haufen gefunden, und uns hat interessiert, ob solche Scheiben auch die extremeren Umgebungen in den heißen, dichten Sternhaufen nahe dem Zentrum der Milchstraße überleben können.

Diese Haufen enthalten sehr massereiche junge Sterne mit Temperaturen von etwa 50 000 Grad Celsius, von denen intensive energiereiche UV-Strahlung ausgeht. Die Staubscheiben um die Sterne, die wir untersucht haben, sind dieser harten Strahlung ausgesetzt. Nach gängigem Wissen sollten diese Scheiben deshalb nach wenigen 100 000 Jahren verdampft sein. Die Sterne in den Arches- und Quintuplet-Haufen sind aber viel älter, etwa 2.5 und 4 Millionen Jahre, und dennoch haben wir in jedem Haufen mehr als 20 Staubscheiben um helle Sterne gefunden."

Scheiben aus Staub und Gas um junge Sterne sind von besonderem Interesse, weil aus ihnen Planeten und Sonnensysteme entstehen. Auch unser Sonnensystem ist vor etwa 4.5 Milliarden Jahren aus einer solchen Scheibe um die damals noch junge Sonne entstanden. Ob die Scheiben, die man nun gefunden hat, jemals Planeten bilden werden, ist noch ungewiss; Brandner gibt zu bedenken, dann man anhand der jetzt verfügbaren Daten die Massen der Scheiben schlecht abschätzen kann.

“Wir sehen nur den warmen Staubanteil dieser Scheiben, der sich auf moderaten Abständen von den Sternen befindet, und wir können insbesondere das Gas, das dort auch vorhanden sein muß, nicht direkt sehen. Wir glauben nicht, dass sich dort Planeten von Jupitergrösse bilden werden, aber Planeten mit Massen ähnlich der Erde könnten in Frage kommen. Es besteht auch die Möglichkeit, daß diese massereichen Sterne nahe Doppelsternbegleiter haben, von denen durch Massenüberstrom die Scheiben weiter angereichert werden könnten.”

Gerade weil die Ergebnisse des Teams den gängigen theoretischen Vorstellungen zur Lebensdauer von Staubscheiben widersprechen, sind sie für die Forschung besonders interessant. Die Existenz der hier gefundenen Staubscheiben bedeutet, daß man die theoretischen Konzepte neu überdenken muß. Diese sind wichtig für das Verständnis der Geschichte der Planetenentstehung vom frühen Universum bis heute:

Vor mehreren Milliarden Jahren bildeten die Galaxien ihre Sterne wesentlich schneller als heute; dichte, heiße Sternentstehungsregionen wie die Sternhaufen im Zentrum der Milchstrasse erstreckten sich damals über viel größere Regionen innerhalb der Galaxien. Die Untersuchung der Arches und Quintuplet Haufen liefert daher Hinweise, wann und wie sich Planeten über die Geschichte des Kosmos hinweg gebildet haben.

Um diese Staubscheiben zu finden, haben die Astronomen Aufnahmen des “Very Large Telescope” der Europäischen Südsternwarte (ESO) mit denen des Hubble-Weltraumteleskops kombiniert, das sich in einer Umlaufbahn um die Erde befindet. Diese Beobachtungen mußten im Infrarotlicht erfolgen, also bei Wellenlängen, die länger als die des sichtbaren Lichts sind.

Infrarotkameras erlauben Astronomen, durch die dichten Staubwolken nahe des Zentrums der Milchstraße zu blicken, die für sichtbares Licht kaum zu durchdringen sind. Eine Schlüsselrolle bei der vorliegenden Arbeit spielte das NAOS/CONICA Kamerasystem des Very Large Telescopes, das mithilfe adaptiver Optik den Bildverwaschungseffekt der Erdatmosphäre teilweise kompensieren kann und daher sehr scharfe Bilder liefert. Das Max-Planck-Institut für Astronomie und das Max-Planck-Institut für Extraterrestrische Physik hatten die Entwicklung CONICAs geleitet.

Wolfgang Brandner erklärt, daß die Infrarotbilder seines Teams die Suche nach einer charakteristischen Signatur im Licht der Sterne erlauben, die nur dann vorhanden ist, wenn die Sterne von einer Staubscheibe umgeben sind.

Kontakt

Wolfgang Brandner (Koautor)
Max-Planck-Institut für Astronomie
Telefon: (+49|0) 6221 528-289
E-Mail: brandner@mpia.de

Andrea Stolte (Erstautorin)
Argelander-Institut für Astronomie, Universität Bonn
Telefon: (+49|0)228 736 790
astolte@astro.uni-bonn.de

Kai Noeske (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie
Telefon: (+49|0) 6221 528-141
E-Mail: noeske@mpia.de

Hintergrundinformationen

Die beteiligten Wissenschaftler sind Andrea Stolte und Benjamin Hußmann (Argelander Institut für Astronomie, Universität Bonn), Maryam Habibi (Max-Planck-Institut für extraterrestrische Physik, Garching), Christoph Olczak (Astronomisches Recheninstitut, ZAH, Universität Heidelberg) und Wolfgang Brandner (MPIA).

Die Ergebnisse der Studie sind veröffentlicht als Stolte et al., "Circumstellar discs in Galactic centre clusters: Disc-bearing B-type stars in the Quintuplet and Arches clusters" in Astronomy & Astrophysics, DOI: 10.1051/0004-6361/201424132

Weitere Informationen:

http://www.mpia.de/news/wissenschaft/2015-02-Staubscheiben - Webversion der Pressemitteilung

Dr. Kai Noeske | Max-Planck-Institut für Astronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode für die Datenübertragung mit Licht
29.05.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligente Sensoren mit System

29.05.2017 | Messenachrichten

Geckos kommunizieren überraschend flexibel

29.05.2017 | Biowissenschaften Chemie

1,5 Millionen Euro für vier neue „Innovative Training Networks” an der Universität Hamburg

29.05.2017 | Förderungen Preise