Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Staubige Strukturen in einer weit entfernten Galaxie

31.03.2015

Wissenschaftler des Max-Planck-Institut für Astrophysik (MPA) kombinierten hochauflösende Bilder der ALMA-Teleskope mit einem neuen System zum Entzerren der Bilder einer starken Gravitationslinse, um so das erste detaillierte Abbild einer jungen und entfernten Galaxie zu erhalten, die mehr als 11 Milliarden Lichtjahre von der Erde entfernt ist. Die rekonstruierten Bilder zeigen, dass die Sternentstehung den interstellaren Staub aufheizt und ihn in drei unterschiedlichen Regionen einer größeren Verteilung stark zum Leuchten bringt. Das deutet darauf hin, dass das Objekt eine rotierende Scheibengalaxie sein könnte, die wir von der Seite sehen.

Galaxien bilden ständig neue Sterne in dichten Wolken aus interstellarem Gas und Staub. Die Sternentstehungsrate in heutigen Galaxien ist jedoch viel geringer als zu früheren Zeiten. Als das Universum erst ungefähr ein Viertel seines heutigen Alters hatte, war die Sternentstehung auf ihrem Höhepunkt; deshalb sind die Astronomen sehr daran interessiert, mehr über diese Zeitspanne zu erfahren.


Abb. 1 ALMA-Bild der Kontinuumsemission bei 236 GHz der gelinsten Galaxie SDP.81 bei zwei Winkel­auflösungen. Das gelinste System besteht aus vier Bildern mit einem ausgedehnten, nur schwach leuchtenden Einstein-Ring.


Abb. 2 Modell für die Helligkeitsverteilung für das Bild in Abb. 1 (links) und die rekonstruierte Oberflächen­helligkeitsverteilung (rechts) der Hintergrundgalaxie. Man erkennt deutlich drei Bereiche mit erhöhter Emission; diese Struktur könnte auf eine Scheibengalaxie hindeuten, die von der Seite gesehen wird.


Abb. 3 Diese Karte zeigt die rekonstruierte Stern­entstehungsrate der weit entfernten Galaxie, die eine ziemlich geringe Ausdehnung besitzt (wie durch die Längenskala in Lichtjahren angedeutet). Die Farben zeigen Staub, der durch die Strahlung junger Sterne aufgeheizt wird.

Aufgrund der endlichen Lichtgeschwindigkeit ist ein Blick zurück in die Vergangenheit möglich, aber immer verbunden mit einem Blick auf große Entfernungen. Dies wiederum bedeutet, dass junge Galaxien sehr klein und sehr schwach erscheinen. Außerdem können die meisten ihrer neugeborenen Sterne nicht direkt beobachtet werden, da ihre Strahlung durch Staub in der umgebenden Gaswolke absorbiert wird und bei Ferninfrarot-Wellenlängen wieder emittiert wird.

Dies macht Sternentstehungsgebiete in entfernten Galaxien zu einem der wichtigsten Ziele für das Atacama Large Millimeter/Submillimeter Array. Im Endstadium, wird ALMA aus 66 Hochpräzisionsantennen auf der Chajnantor-Hochebene auf 5000 Meter Höhe im nördlichen Chile bestehen.

Die Daten der einzelnen Antennen können interferometrisch kombiniert werden, und die Spannweite von 15 Kilometern des Teleskop¬verbundes insgesamt liefert Auflösungen von besser als einer Zehntel Bogensekunde. Ohne irgendwelche Hilfsmittel. Dies allein wäre aber immer noch nicht ausreichend, um detaillierte Bilder junger Galaxien auf dem Höhepunkt ihrer Sternentstehungsaktivitäten zu machen.

"Bei einer Konferenz präsentierten ALMA-Wissenschaftler neue Daten, mit denen sie das wissenschaftliche Potential des Arrays überprüft hatten, darunter auch ein Bild eines starken Gravitationslinsensystems, das sofort unser Interesse weckte", erinnert sich Simona Vegetti, Postdoc-Wissenschaftlerin am MPA. "Durch die Linse wird das Licht der Hintergrundgalaxie stark verstärkt, genauer gesagt um das 17-fache, nur deshalb sind wir überhaupt in der Lage, die Galaxie zu sehen.

Zusammen mit ALMAs einzigartiger Winkelauflösung gab uns das die Chance, zum ersten Mal zu versuchen die Details in der Verteilung des Staubes in einer weit entfernten Galaxie zu untersuchen." Der starke Gravitationslinseneffekt tritt auf, wenn eine Hintergrundgalaxie nahe an der Sichtlinie zu einer Massenkonzentration im Vordergrund liegt, zum Beispiel einem Galaxienhaufen, der die Lichtstrahlen von der Quelle auf dem Weg zum Beobachter "verbiegt".

Die Vordergrundlinse ist jedoch ein unvollkommenes optisches System, was zu sehr großen Verzerrungen führt (siehe Abb. 1). Trotzdem kann man aufgrund der Eigenschaften der "gelinsten" Bilder die Massenverteilung des Linsensystems bestimmen und das "echte" (d.h. unverzerrte) Bild der fernen Galaxie rekonstruieren.

"Bei früheren Rekonstruktionen wurde angenommen, dass die Hintergrundgalaxien glatt und regelmäßig sind", erklärt Matus Rybak, der die Computermodellierung am MPA durchführte. "Das ist aber wahrscheinlich eine recht schlechte Näherung für die Struktur einer Galaxie mit starker Sternentstehung, und die rohen ALMA-Bilder gaben uns bereits klare Hinweise darauf, dass diese Hintergrundquelle komplex sein muss. Der neue, allgemeinere Ansatz, den wir entwickelt haben, ist viel besser für solch unregelmäßige Systeme geeignet."

Dieser Verdacht bestätigt sich im rekonstruierten Bild der Galaxie SDP.81, das zeigt, dass die Sternentstehung in drei verschiedenen Regionen konzentriert ist (siehe Abb. 2). "Dies ist das erste Mal, dass wir Strukturen in der Staubemission einer z=3 Galaxie auf Skalen von weniger als 150 Lichtjahren sehen", betont Simona Vegetti. Zu dieser kosmischen Zeit befand sich die Sternentstehungsrate in typischen Galaxien auf dem Höhepunkt, und in der Tat entstehen in SDP.81 Sterne mit etwa 300 Sonnenmassen pro Jahr. (In unserer Milchstraße beträgt die Sternentstehungsrate nur ca. 3 Sonnenmassen pro Jahr.)

Diese komplexe Struktur der Galaxie könnte darauf hindeuten, dass es sich um eine rotierende Scheibe mit einer zentralen Ausbuchtung handelt, die wir von der Seite sehen (und die auch von der Seite gelinst wird). Alternativ könnte es sich um ein System handeln, das sich gerade im Prozess der Verschmelzung befindet, wobei die einzelnen Komponenten immer noch sichtbar sind.

Um zwischen diesen Möglichkeiten unterscheiden zu können, benötigen die Wissenschaftler Daten über die Bewegungen des Gases innerhalb der Galaxie. Der nächste Schritt für das MPA-Team gemeinsam mit ihren Kollegen Paola Andreani an der ESO und John McKean an der Universität Groningen und dem niederländischen Institut für Radioastronomie (ASTRON) wird es daher sein, die Beobachtungen einer Moleküllinie dieses Systems zu analysieren, die ALMA ebenfalls durchgeführt hat.

Originalveröffentlichung
ALMA imaging of SDP.81 I. A pixelated reconstruction of the far-infrared continuum emission, M. Rybak, J. P. McKean, S. Vegetti, P. Andreani and S. D. M. White, submitted to MNRAS

Kontakt:

Simona Vegetti
Max-Planck-Institut für Astrophysik
Phone: 089 30000-2285
Email: svegetti@mpa-garching.mpg.de

Hannelore Hämmerle
Öffentlichkeitsarbeit
Max-Planck-Institut für Astrophysik
Tel. +49 89 30000-3980
E-mail: pr@mpa-garching.mpg.de

Hannelore Hämmerle | Max-Planck-Institut für Astrophysik
Weitere Informationen:
http://www.mpa-garching.mpg.de/mpa/institute/news_archives/news1504_aaa/news1504_aaa-de.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE