Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Starkes Trio in der Großen Magellanschen Wolke

27.01.2015

Teleskop H.E.S.S. entdeckt drei extrem helle Gammastrahlenquellen in der Satellitengalaxie unserer Milchstraße ‒ Tübinger Astrophysiker an internationalem Projekt beteiligt

Mit Hilfe des Teleskopsystems H.E.S.S. („High Energy Stereoscopic System“) hat ein internationales Forscherteam in der Galaxie „Große Magellansche Wolke“ äußerst helle Gammastrahlenquellen sehr hoher Energie entdeckt. Es ist das erste Mal, dass stellare Quellen für Gammastrahlen in diesem Energiebereich außerhalb unserer eigenen Galaxie gefunden wurden.


Optisches Bild der Milchstraße; rechts daneben eine gezoomte Infrarotaufnahme der Großen Magellanschen Wolke. Über beide Aufnahmen ist jeweils eine H.E.S.S.-Himmelskarte gelegt.

Kartenbild der Milchstraße: © H.E.S.S.-Kollaboration, optische Aufnahme: SkyView, A. Mellinger; Kartenbild der GMW © H.E.S.S.-Kollaboration, Infrarotaufnahme: M. Braun et al. (1997)

Die Forscher konnten drei völlig unterschiedliche Objekte beobachten: den stärksten bekannten Pulsarwind-Nebel, den leuchtstärksten bekannten Überrest einer Supernova und eine sogenannte Superblase, eine von mehreren Sternen und Supernovae gebildete Schale mit 270 Lichtjahren Durchmesser. Mit der Superblase wurde zugleich auch ein ganz neuer Typ sehr hochenergetischer Gammastrahlenquellen gefunden.

Himmelsbeobachtungen im sehr hochenergetischen Gammastrahlungslicht sind optimal, um kosmische Beschleuniger wie Supernovaüberreste oder Pulsarwind-Nebel zu finden. Dort werden geladene Teilchen (z.B. Protonen) auf extrem hohe Geschwindigkeiten beschleunigt. Treffen sie auf Licht oder Gas, senden sie hochenergetische Gammastrahlen aus. Diese lassen sich mit großen Teleskopen wie H.E.S.S. von der Erde beobachten. An den aktuellen Entdeckungen waren Wissenschaftler des „Kepler Center for Astro and Particle Physics“ der Universität Tübingen beteiligt.

Die Große Magellansche Wolke (GMW) ist eine Zwerggalaxie in einer relativ geringen Entfernung von ca. 160.000 Lichtjahren. Auf der Suche nach sehr hochenergetischen Gammastrahlen aus der GMW investierten die H.E.S.S.-Wissenschaftler insgesamt 210 Stunden Beobachtungszeit, um die größte sternbildende Region, den sogenannten Tarantula-Nebel, zu erkunden.

Dabei war es erstmals möglich, einzelne sehr hochenergetische Quellen in einer Galaxie außerhalb der Milchstraße im Gammalicht voneinander zu trennen und mit bekannten Objekten zu identifizieren. Drei unterschiedliche Objekte konnten als Gammastrahlungsquellen identifiziert werden: die Superblase 30 Dor C, der Pulsarwind-Nebel N 157B und der Supernovaüberrest N 132D.

30 Dor C ist eine sogenannte Superblase, die entsteht, wenn eine Gruppe von massereichen Sternen und Sternexplosionen zusammenwirken und ihre Auswurfmassen (Sternenwinde und Explosionsmaterie) eine gemeinsame äußere Schale formen. Superblasen werden als „Fabriken“ galaktischer kosmischer Strahlung diskutiert. Die mit H.E.S.S. erzielten Ergebnisse zeigen nun, dass die Superblase 30 Dor C tatsächlich mit Hochenergieteilchen gefüllt ist und so als Quelle kosmischer Strahlungsteilchen wirkt. Superblasen stellen damit eine neue Klasse von Quellobjekten im Hochenergiebereich dar.

Pulsare sind hochmagnetisierte, schnell rotierende Neutronensterne. Sie schleudern einen Wind ultrarelativistischer Teilchen aus, die einen Nebel bilden. Das bekannteste derartige Objekt in unserer Galaxie ist der Krebsnebel, eine der stärksten Quellen hochenergetischer Gammastrahlen am Himmel. Der durch die H.E.S.S.-Teleskope in der GMW entdeckte Nebel N 157B übertrifft den Krebsnebel in der Gammalichtstärke um eine ganze Größenordnung.

N 132D, bekannt als helles Objekt im Radio- und Infrarotbereich, gehört vermutlich zu den ältesten Supernovaüberresten, die noch hochenergetische Gammastrahlen aussenden. Bei einem geschätzten Alter zwischen 2500 und 6000 Jahren dürfte sich die Druckwelle der Sternexplosion (laut Modellrechnungen) bereits deutlich verlangsamt haben, was eigentlich bedeutet, dass sie in ihrer Wirkung als Teilchenbeschleuniger nachgelassen haben sollte. Dennoch überstrahlt N 132D selbst noch die leuchtstärksten Supernovaüberreste unserer eigenen Galaxie. Mit dieser Beobachtung haben sich Vermutungen aus früheren H.E.S.S.-Ergebnissen bestätigt, dass Supernovaüberreste viel heller leuchten können als bislang angenommen.

„Die Große Magellansche Wolke ist ein großartiges Labor, um solche Objekte zu untersuchen,“ berichtet Dr. Manami Sasaki, Emmy Noether-Nachwuchsgruppenleiterin am Institut für Astronomie und Astrophysik und Expertin für die GMW. „Wir konnten sie bereits seit einiger Zeit im Röntgenenergiebereich beobachten und untersuchen. Inzwischen haben auch Cherenkov-Teleskope wie H.E.S.S. eine Empfindlichkeit erreicht, mit der Quellen unserer Nachbargalaxie im Licht hochenergetischer Gammastrahlungsquellen untersucht werden können. So stellt sich unser Arbeitsgebiet buchstäblich in völlig neuem Licht dar.”

Noch bessere Aufnahmen solcher entfernten Objekte im hochenergetischen Gammalicht sind nur noch mit verbesserten Teleskopen möglich. „Glücklicherweise konnte die Empfindlichkeit des H.E.S.S.-Teleskopsystems durch die vor kurzem erfolgte Installation des neuen H.E.S.S. II 28-Meter-Teleskops in Namibia erheblich verbessert werden“, erklärt Professor Andrea Santangelo, Leiter der Arbeitsgruppe Hochenergieastrophysik an der Mathematisch-Naturwissenschaftlichen Fakultät Tübingen. Und langfristig soll das Nachfolgeprojekt „Cherenkov Teleskope Array (CTA)“ Bilder der GMW mit noch höherer Auflösung liefern„ Unter den Hauptzielen, die vom CTA-Konsortium angestrebt werden, ist auch weiterhin die Beobachtung der GMW“, sagt Dr. Gerd Pühlhofer, der die Arbeit der Tübinger Arbeitsgruppe für den hochenergetischen Gammabereich koordiniert.

Originalpublikation:
The exceptionally powerful TeV gamma-ray emitters in the Large Magellanic Cloud, H.E.S.S. Collaboration (corresponding authors: j.vink@uva.nl, nukri.komin@wits.ac.za, chia-chun.lu@mpi-hd.mpg.de, michael.mayer@physik.hu-berlin.de, stefan.ohm@desy.de), Science 347 (2015), 406-412

Kontakt:
Prof. Dr. Andrea Santangelo
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Astronomie und Astrophysik/Kepler Center for Astro and Particle Physics
Telefon +49 7071 29-78128
Santangelo[at]astro.uni-tuebingen.de

Dr. Gerd Pühlhofer
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Astronomie und Astrophysik / Kepler Center for Astro and Particle Physics
Telefon +49 7071 29-74982
Gerd.Puehlhofer[at]astro.uni-tuebingen.de

Institut für Astronomie und Astrophysik: http://www.uni-tuebingen.de/de/4656

Weitere Informationen:

http://www.mpi-hd.mpg.de/HESS/pages/about/

Antje Karbe | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie