Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Starke Anzeichen für Entdeckung des Higgs-Teilchens

04.07.2012
Neueste Ergebnisse des Forschungszentrums CERN – Göttinger Arbeitsgruppe maßgeblich beteiligt

Die Frage, wie die Masse von Elementarteilchen kurz nach dem Urknall entstand, beschäftigt weltweit die Wissenschaftler. Zur Erklärung suchen sie nach dem dafür fehlenden Higgs Boson, auch „Gottesteilchen“ genannt.

Daran beteiligt sind auch Göttinger Teilchenphysiker, die am Großexperiment ATLAS mit dem Teilchenbeschleuniger am europäischen Forschungszentrum CERN in Genf forschen. Gemeinsam mit Wissenschaftlern vom Großexperiment CMS analysieren sie Daten hochenergetischer Kollisionen von Wasserstoffkernen im Teilchenbeschleuniger und ziehen Rückschlüsse auf die physikalischen Vorgänge in der Kollision.

Dabei haben sie nun deutliche Anzeichen für ein bislang unbekanntes Teilchen gefunden, dass bei einer Masse von 125 Giga-Elektronvolt entsteht – ein Giga-Elektronvolt entspricht der Masse eines Wasserstoffkerns. Es könnte sich dabei um das lang gesuchte Higgs-Teilchen handeln. Die Ergebnisse wurden in Genf vorgestellt.

„Das gefundene Teilchen wird im ATLAS-Experiment über Zerfälle in zwei Photonen und zwei Z-Bosonen nachgewiesen. Ob es sich tatsächlich um das Higgs-Teilchen handelt oder ob wir etwas gänzlich Unerwartetem auf der Spur sind, muss durch weitere Messdaten und Untersuchungen geklärt werden. Beides wären große Entdeckungen“, sagt Prof. Dr. Arnulf Quadt vom II. Physikalischen Institut der Universität Göttingen und Leiter des Göttinger Forscherteams. Allein aus Deutschland sind etwa 400 Wissenschaftler aus 13 Universitäten, dem DESY in Hamburg sowie dem Max-Planck-Institut in München am ATLAS-Experiment beteiligt. Die Universitäten werden durch das Bundesministerium für Bildung und Forschung (BMBF) über die Verbundforschung finanziert. Ihre Aktivitäten sind im Forschungsschwerpunkt 101 aus dem Exzellenzprogramm des BMBF zusammengefasst. Der Forschungsschwerpunkt wurde kürzlich um weitere drei Jahre verlängert, wobei allein die Förderung der Göttinger Arbeitsgruppe über zwei Millionen Euro beträgt.
Schwerpunkte der Forschung in Göttingen sind neben dem Betrieb des Grid-Computings, einem Konzept zum weltweit verteilten und vernetzten Rechnen, auch die Entwicklung von strahlenharten, schnellen hybriden Pixeldetektoren zur Vermessung der Flugbahn von Elementarteilchen nach der Kollision sowie insbesondere die Auswertung der Daten. „Gerade diese Arbeitsschwerpunkte eignen sich hervorragend, um mithilfe weiterer Messdaten die Natur des neuen Teilchens aufzuklären“, sagt Prof. Quadt. Allein in der ersten Jahreshälfte 2012 habe die Datenmenge gegenüber den Jahren 2010 und 2011 verdoppelt werden können.

Weitere Informationen zum Thema gibt es im Internet unter http://atlas.ch und http://www.fsp101-atlas.de.
Kontaktadresse:
Prof. Dr. Arnulf Quadt
Georg-August-Universität Göttingen
Fakultät für Physik – II. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-7635, Fax (0551) 39-4493
E-Mail: aquadt@uni-goettingen.de

Thomas Richter | idw
Weitere Informationen:
http://www.ph2.physik.uni-goettingen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie