Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie stark ist die schwache Kraft?

25.01.2011
Eine neue Messung der Lebensdauer des Myons – die genaueste Bestimmung einer Lebensdauer in der Welt der kleinen Teilchen – liefert einen hochgenauen Wert für einen Parameter, der für die Bestimmung der Stärke der schwachen Kernkraft entscheidend ist. Die Experimente wurden von einem internationalen Forschungsteam am Paul Scherrer Institut durchgeführt. Die Ergebnisse erscheinen in Kürze in der Fachzeitschrift Physical Review Letters.

Die schwache Kraft ist eine der vier Grundkräfte der Natur. Obwohl wir in unserem Alltag kaum Vorgängen begegnen, die durch die schwache Kraft bestimmt werden, ist sie doch von wesentlicher Bedeutung. So ist sie etwa für die Vorgänge verantwortlich, die die Sonne scheinen lassen.


PSI-Forscher Bernhard Lauss an der Detektoranordnung, die zur Messung der Myonenlebensdauer verwendet wurde. Foto: PSI/F. Reiser

Nun hat ein internationales Forschungsteam unter Leitung von Forschenden der University of Illinois, der Boston University und der University of Kentucky (alle USA) am Paul Scherrer Institut Experimente durchgeführt, dank denen ein Parameter, der für die Stärke der schwachen Wechselwirkung – wie die schwache Kraft auch genannt wird - von entscheidender Bedeutung ist, mit einzigartiger Genauigkeit bestimmt werden konnte. Dieser als Fermi-Konstante bekannte Parameter ist eine der fundamentalen Naturkonstanten, die für die exakte Berechnung von Vorgängen in der Welt der kleinsten Teilchen nötig sind.

Einer der wesentlichen Erfolge beim Verständnis der subatomaren Welt war in den Siebzigerjahren des vergangenen Jahrhunderts bestand darin, dass Physiker gezeigt haben, dass die schwache und die elektromagnetische Wechselwirkung – eine weitere der vier Grundkräfte – eigentlich zwei Aspekte einer einzelnen Wechselwirkung sind. Diese wird als elektroschwache Wechselwirkung bezeichnet und deren Stärke wird durch insgesamt drei Parameter festgelegt – einer davon ist die Fermi-Konstante.

Lebensdauer des Myons – Schlüssel zur Stärke der schwachen Kraft

Der neue Wert der Fermi-Konstante wurde durch eine hochpräzise Bestimmung der Lebensdauer des Myons – die genaueste Messung einer Lebensdauer in der Welt der Atome und Elementarteilchen – ermöglicht. Das Myon ist ein instabiles Elementarteilchen, das mit einer Lebensdauer von rund 2 Mikrosekunden (Millionstelsekunden) zerfällt. Dieser Zerfall wird alleine von der schwachen Kraft bestimmt und es gibt einen recht einfachen Zusammenhang zwischen der Lebensdauer des Myons und der Stärke der schwachen Kraft. „Die Bestimmung der Fermi-Konstante aus der Myonen-Lebensdauer setzt eine elegante und präzise Theorie voraus; aber bis 1999 war die Theorie nicht so gut wie die Experimente.“ erkärt David Hertzog, der zur Zeit der Messungen Forscher an der University of Illinois war und jetzt an der University of Washington arbeitet „seither haben mehrere Durchbrüche praktisch alle theoretischen Unklarheiten beseitigt. Die grösste Unsicherheit bei der Bestimmung der Fermi-Konstante hing nun davon ab, wie genau man die Lebensdauer des Myons gemessen hatte.“

Messung 100 Milliarden Mal wiederholt – Messgenauigkeit: 2 Millionstel einer Millionstelsekunde.

Das MuLan-Experiment (Muon Lifetime Analysis) nutzte Myonen, die an der Beschleunigeranlage des Paul Scherrer Instituts in Villigen (Schweiz) erzeugt wurden – der stärksten Myonenquelle weltweit und dem einzigen Ort, an dem so präzise Experimente durchgeführt werden können. „Das Herzstück des Experiments waren spezielle Targets – Auffangscheiben –, in denen immer wieder Gruppen von ankommenden positiven Myonen gestoppt wurden.“ erklärt Bernhard Lauss vom PSI das Prinzip des Experiments „Der Strahl wurde dann jeweils rasch abgeschaltet, wobei rund 20 Myonen im Target steckenblieben. Mit der Zeit zerfiel jedes dieser Myonen und sandte dabei als Zeichen seines Zerfalls ein schnelles Positron – ein positiv geladenes Elektron – aus.“ Die Positronen wurden von 170 Detektoren nachgewiesen, die das Target in Form eines riesigen Fussballs umgaben. Robert Carey von der Universität Boston fügt hinzu: „Wir haben den Vorgang für 100 Milliarden Myonenpakete wiederholt, dabei Billionen von einzelnen Zerfällen beobachtet und 100 Terabyte an Daten gesammelt, die für die spätere Auswertung im Supercomputer des amerikanischen Nationalen Hochleistungsrechenzentrums (NCSA) in Illinois gespeichert wurden. Aus diesen Daten wurde die Verteilung der Lebenszeiten der einzelnen Myonen erstellt und daraus die mittlere Lebensdauer bestimmt, für die sich der Wert 2.1969803 ± 0.0000022 Mikrosekunden ergab. Die Unsicherheit dieses Ergebnisses beträgt 2 Millionstel einer Millionstelsekunde – das ist ein wahrer Weltrekord.“

Die Kollaboration

Die Experimente wurden im Rahmen einer internationalen Kollaboration am Paul Scherrer Institut durchgeführt, an der Wissenschaftler folgender Institutionen beteiligt waren:
• Department of Physics, University of Illinois at Urbana-Champaign, Urbana USA
• Department of Physics and Astronomy, University of Kentucky, Lexington, USA
• Department of Physics, Boston University, Boston, USA
• Department of Physics, James Madison University, Harrisonburg, USA
• Department of Physics and Computational Science, Regis University, Denver, USA
• Department of Mathematics and Physics, Kentucky Wesleyan College, Owensboro, USA
• Paul Scherrer Institut, Villigen PSI, Schweiz
• Kernfysisch Versneller Instituut, University of Groningen, Groningen, Niederlande

Text: Paul Piwnicki/David Hertzog

Über das PSI:
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1400 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakte:

Prof. David Hertzog, University of Illinois, jetzt an der University of Washington, Department of Physics, Box 351560, Seattle, WA 98195-1560, USA, Telefon: +1 (206) 543-0839, E-Mail: hertzog@uw.edu

Prof. Robert Carey, Boston University, Department of Physics,
590 Commonwealth Avenue, Boston, MA 02215, USA,
Telefon: +1 (617) 353 6031 E-Mail: carey@bu.edu
Dr. Bernhard Lauss, Labor für Teilchenphysik, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz, Telefon: +41 (0)56 310 46 47, E-Mail: bernhard.lauss@psi.ch
Originalveröffentlichung:
Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision

D.M.Webber et al. (MuLan Collaboration), Physical Review Letters (zur Veröffentlichung angenommen)

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie