Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie stark ist das Magnetfeld bei Himmelskörpern?

08.01.2009
Die Magnetfeldstärke schnell rotierender Planeten und Sterne hängt anders als bisher gedacht hauptsächlich von der Energiemenge ab, die sie ins Weltall abgeben.

Nicht nur die Erde, sondern auch andere Planeten, die Sonne und viele Sterne besitzen ein eigenes Magnetfeld. Die Stärke dieser Felder unterscheidet sich erheblich: Während das Magnetfeld des Jupiter zehnmal so stark ist wie das der Erde, übertrifft das Magnetfeld mancher Sterne diesen Wert um mehr als das Tausendfache. Eine Erklärung für diese Unterschiede fehlte bisher.


Obwohl das Innere schnell rotierender Sterne, des Jupiter und der Erde (von links) sehr verschieden aufgebaut ist, erzeugen all diese Himmelskörper ein Magnetfeld, das dem eines Stabmagneten gleicht. Die Stärke des Magnetfeldes ist jedoch sehr verschieden. Bild: MPS / U. Christensen

Zudem gab es unterschiedliche Theorien für Planeten und Sterne. Wissenschaftler vom Max-Planck-Institut für Sonnensystemforschung und der Universität Göttingen haben nun eine Theorie vorgeschlagen, die für alle schnell rotierenden Himmelskörper gilt. Demnach sind die Energiemenge, die der Körper ins Weltall abstrahlt, und seine Dichte entscheidend. (Nature, 8. Januar 2009)

Magnetfelder spielen im Weltall eine wichtige Rolle: An der Oberfläche der Sonne tragen sie zum Entstehen der heftigen Sonneneruptionen bei, die geladene Teilchen ins All schleudern. Das Magnetfeld der Erde hingegen bietet einen effektiven Schutz vor diesem Beschuss. Doch ganz gleich ob Stern oder Planet - die Magnetfelder selbst entstehen tief im heißen Innern der Himmelskörper. Dort steigt flüssiges oder gasförmiges Material in einer Art Kreislauf nach oben, kühlt sich ab und sinkt wieder in die Tiefe. Da dieses Material zusätzlich elektrischen Strom leiten kann, erzeugt die Bewegung der Ladungsträger ähnlich wie bei einem Fahrraddynamo ein Magnetfeld. Die schnelle Rotation der Planeten und Sterne verleiht den gewaltigen Materialströmen zudem eine Form, die das Dynamoprinzip begünstigt.

Bisher glaubten Wissenschaftler deshalb, dass die Rotationsgeschwindigkeit eines Planeten oder eines Sterns die Stärke seines Magnetfeldes bestimmt. Doch Beobachtungen anderer Sterne und Computersimulationen planetarer Dynamos haben gezeigt, dass dieser Zusammenhang nicht für schnell rotierende Körper wie die Erde, den Jupiter und die meisten Sterne mit deutlich geringerer Masse als die der Sonne gilt. Die Stärke des Magnetfeldes steigt ab einer gewissen Rotationsgeschwindigkeit nicht mehr in Abhängigkeit von dieser an. Je nach Himmelskörper liegt die kritische Geschwindigkeit bei einer Umdrehung pro Tag oder einer Umdrehung im Laufe mehrerer Tage.

Wissenschaftler aus Katlenburg-Lindau und Göttingen haben nun aus Computersimulationen eine neue Gesetzmäßigkeit abgeleitet. Demnach hängt die Magnetfeldstärke eines Himmelskörpers hauptsächlich von der Energiemenge ab, die er in Form von Licht und Wärmestrahlung ins Weltall abgibt. Denn ein Teil dieses Energieflusses steht im Innern des Himmelskörpers zur Verfügung, um elektrische Ströme und somit das Magnetfeld zu erzeugen. Die Forscher konnten die neue Regel erstmals auch auf Sterne anwenden, deren Dichte sich anders als bei Planeten stark mit zunehmender Tiefe ändert.

Mit Beobachtungsdaten von Erde, Jupiter und 35 schnell rotierenden Sternen mit bekannter Magnetfeldstärke stimmt die neue Theorie gut überein. "Zudem legen unsere Ergebnisse nahe, dass der Dynamoprozess in Planeten und Sternen nicht so verschieden ist wie bisher angenommen", sagt Prof. Dr. Ulrich Christensen vom Max-Planck-Institut für Sonnensystemforschung.

Die neuen Ergebnisse erlauben es zudem, die Stärke des Magnetfeldes von Himmelskörpern vorherzusagen, bei denen sich dieses bisher nicht nachweisen ließ. Manche Sterne etwa werden von Planeten umkreist, die deutlich größer sind als Jupiter, der größte Planet unseres Sonnensystems. Für solche Planetenriesen sagen die Forscher ein Magnetfeld voraus, das zehn Mal so stark ist wie das des Jupiter.

Nach Ansicht der Wissenschaftler müssten diese Kolosse intensive Radiowellen aussenden. Zwar sind bisherige Antennen nicht empfindlich genug, um diese nachzuweisen. Doch neue Anlagen wie das Antennenfeld LOFAR, das aus Stationen in den Niederlanden, Frankreich, Deutschland, Schweden und England bestehen soll und in den nächsten Jahren in Betrieb geht, könnten die Wellen messen. Auf diese Weise ließen sich dann die Magnetfelder bestimmen - und darüber hinaus neue Planeten dieser Art entdecken.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mps.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics