Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie stark ist das Magnetfeld bei Himmelskörpern?

08.01.2009
Die Magnetfeldstärke schnell rotierender Planeten und Sterne hängt anders als bisher gedacht hauptsächlich von der Energiemenge ab, die sie ins Weltall abgeben.

Nicht nur die Erde, sondern auch andere Planeten, die Sonne und viele Sterne besitzen ein eigenes Magnetfeld. Die Stärke dieser Felder unterscheidet sich erheblich: Während das Magnetfeld des Jupiter zehnmal so stark ist wie das der Erde, übertrifft das Magnetfeld mancher Sterne diesen Wert um mehr als das Tausendfache. Eine Erklärung für diese Unterschiede fehlte bisher.


Obwohl das Innere schnell rotierender Sterne, des Jupiter und der Erde (von links) sehr verschieden aufgebaut ist, erzeugen all diese Himmelskörper ein Magnetfeld, das dem eines Stabmagneten gleicht. Die Stärke des Magnetfeldes ist jedoch sehr verschieden. Bild: MPS / U. Christensen

Zudem gab es unterschiedliche Theorien für Planeten und Sterne. Wissenschaftler vom Max-Planck-Institut für Sonnensystemforschung und der Universität Göttingen haben nun eine Theorie vorgeschlagen, die für alle schnell rotierenden Himmelskörper gilt. Demnach sind die Energiemenge, die der Körper ins Weltall abstrahlt, und seine Dichte entscheidend. (Nature, 8. Januar 2009)

Magnetfelder spielen im Weltall eine wichtige Rolle: An der Oberfläche der Sonne tragen sie zum Entstehen der heftigen Sonneneruptionen bei, die geladene Teilchen ins All schleudern. Das Magnetfeld der Erde hingegen bietet einen effektiven Schutz vor diesem Beschuss. Doch ganz gleich ob Stern oder Planet - die Magnetfelder selbst entstehen tief im heißen Innern der Himmelskörper. Dort steigt flüssiges oder gasförmiges Material in einer Art Kreislauf nach oben, kühlt sich ab und sinkt wieder in die Tiefe. Da dieses Material zusätzlich elektrischen Strom leiten kann, erzeugt die Bewegung der Ladungsträger ähnlich wie bei einem Fahrraddynamo ein Magnetfeld. Die schnelle Rotation der Planeten und Sterne verleiht den gewaltigen Materialströmen zudem eine Form, die das Dynamoprinzip begünstigt.

Bisher glaubten Wissenschaftler deshalb, dass die Rotationsgeschwindigkeit eines Planeten oder eines Sterns die Stärke seines Magnetfeldes bestimmt. Doch Beobachtungen anderer Sterne und Computersimulationen planetarer Dynamos haben gezeigt, dass dieser Zusammenhang nicht für schnell rotierende Körper wie die Erde, den Jupiter und die meisten Sterne mit deutlich geringerer Masse als die der Sonne gilt. Die Stärke des Magnetfeldes steigt ab einer gewissen Rotationsgeschwindigkeit nicht mehr in Abhängigkeit von dieser an. Je nach Himmelskörper liegt die kritische Geschwindigkeit bei einer Umdrehung pro Tag oder einer Umdrehung im Laufe mehrerer Tage.

Wissenschaftler aus Katlenburg-Lindau und Göttingen haben nun aus Computersimulationen eine neue Gesetzmäßigkeit abgeleitet. Demnach hängt die Magnetfeldstärke eines Himmelskörpers hauptsächlich von der Energiemenge ab, die er in Form von Licht und Wärmestrahlung ins Weltall abgibt. Denn ein Teil dieses Energieflusses steht im Innern des Himmelskörpers zur Verfügung, um elektrische Ströme und somit das Magnetfeld zu erzeugen. Die Forscher konnten die neue Regel erstmals auch auf Sterne anwenden, deren Dichte sich anders als bei Planeten stark mit zunehmender Tiefe ändert.

Mit Beobachtungsdaten von Erde, Jupiter und 35 schnell rotierenden Sternen mit bekannter Magnetfeldstärke stimmt die neue Theorie gut überein. "Zudem legen unsere Ergebnisse nahe, dass der Dynamoprozess in Planeten und Sternen nicht so verschieden ist wie bisher angenommen", sagt Prof. Dr. Ulrich Christensen vom Max-Planck-Institut für Sonnensystemforschung.

Die neuen Ergebnisse erlauben es zudem, die Stärke des Magnetfeldes von Himmelskörpern vorherzusagen, bei denen sich dieses bisher nicht nachweisen ließ. Manche Sterne etwa werden von Planeten umkreist, die deutlich größer sind als Jupiter, der größte Planet unseres Sonnensystems. Für solche Planetenriesen sagen die Forscher ein Magnetfeld voraus, das zehn Mal so stark ist wie das des Jupiter.

Nach Ansicht der Wissenschaftler müssten diese Kolosse intensive Radiowellen aussenden. Zwar sind bisherige Antennen nicht empfindlich genug, um diese nachzuweisen. Doch neue Anlagen wie das Antennenfeld LOFAR, das aus Stationen in den Niederlanden, Frankreich, Deutschland, Schweden und England bestehen soll und in den nächsten Jahren in Betrieb geht, könnten die Wellen messen. Auf diese Weise ließen sich dann die Magnetfelder bestimmen - und darüber hinaus neue Planeten dieser Art entdecken.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mps.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften