Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der stabilste Laser der Welt

12.09.2012
Neuer Silizium-Resonator hält die Frequenz eines Lasers so stabil wie nie zuvor – wichtig für noch bessere optische Atomuhren

Ein Laser mit einer bisher unerreichten Frequenzstabilität – das ist das Ergebnis einer Forschungskooperation der Physikalisch-Technischen Bundesanstalt (PTB) innerhalb des Exzellenzclusters QUEST (Centre for Quantum Engineering and Space-Time Research) mit Kollegen aus dem amerikanischen NIST (National Institute of Standards and Technology)/JILA.


Foto: Der neue Silizium-Resonator im Größenvergleich mit einer Münze
(Abb.: PTB)

Ihre Entwicklung, über die sie in der Fachzeitschrift Nature Photonics berichten, ist wichtig für die höchstauflösende optische Spektroskopie z. B. von ultrakalten Atomen. Doch vor allem steht jetzt ein noch stabilerer Abfragelaser für den Einsatz in optischen Atomuhren zur Verfügung.

Für den Betrieb optischer Atomuhren werden Laserquellen benötigt, die Licht mit möglichst gleichbleibender Frequenz ausstrahlen. Kommerzielle Lasersysteme sind ohne weitere Maßnahmen hierfür ungeeignet. Damit die Laser aber eine möglichst konstante Frequenz abgeben, stabilisiert man sie beispielsweise mithilfe optischer Resonatoren.
Diese setzen sich aus zwei hochreflektierenden Spiegeln zusammen, die durch einen Abstandshalter in fester Entfernung gehalten werden. Das Entscheidende: In Analogie zu einer Orgelpfeife bestimmt die Resonatorlänge, mit welcher Frequenz Licht im Resonator anschwingen kann. Für einen stabilen Laser wird folglich ein Resonator mit hoher Längenstabilität benötigt, d. h. der Abstand zwischen den Spiegeln muss so gut wie möglich konstant gehalten werden.

Moderne resonatorstabilisierte Lasersysteme sind mittlerweile technisch so ausgereift, dass ihre Stabilität nur noch durch das thermische Rauschen der Resonatoren begrenzt ist. Ähnlich zur Brown´schen Molekularbewegung sind die Atome in dem Resonator ständig in Bewegung und schränken damit seine Längenstabilität ein. Bisherige Resonatoren bestanden aus Glas, dessen ungeordnete und „weiche“ Materialstruktur besonders starke Bewegungen zeigt. Für den neuen Resonator hat die Forschergruppe einkristallines Silizium verwendet, ein besonders „steifes“ und deshalb rauscharmes Material.

Abgekühlt auf eine Temperatur von 124 K (-149 Grad Celsius) zeichnet sich Silizium durch eine verschwindend kleine Wärmeausdehnung aus und noch vorhandenes thermisches Rauschen wird zusätzlich reduziert. Um den Resonator bei dieser Temperatur betreiben zu können, mussten die Forscher zunächst einen geeigneten schwingungsarmen Kryostaten entwerfen. Das Resultat kann sich sehen lassen: Durch Vergleichsmessungen mit zwei Glasresonatoren konnten die Wissenschaftler eine bisher unerreichte Frequenzstabilität von 1 • 10-16 für den auf den Silizium-Resonator stabilisierten Laser nachweisen.

Damit können sie ein wichtiges Hindernis bei der Entwicklung noch besserer optischer Atomuhren aus dem Weg räumen. Denn die Stabilität der dabei verwendeten Laser ist ein kritischer Punkt. Das „Pendel“, also das schwingende System einer solchen Uhr, ist eine schmale optische Absorptionslinie in einem Atom oder Ion, deren Übergangsfrequenz von einem Laser ausgelesen wird. Die Linienbreite dieser Übergänge beträgt typischerweise wenige Millihertz, ein Wert, der durch die begrenzte Längenstabilität von Glasresonatoren nicht erreicht werden konnte.

Aber jetzt ist es möglich. Der Laser, der auf den Silizium-Resonator stabilisiert ist, erreicht eine Linienbreite von weniger als 40 mHz und kann daher dazu beitragen, bei der Entwicklung von optischen Atomuhren in eine neue Dimension vorzustoßen. Und auch die optische Präzisionsspektroskopie, ein weiterer Forschungsschwerpunkt des Exzellenzclusters QUEST, kann entscheidende Impulse bekommen.

„Für die Zukunft sehen wir noch Spielräume bei den optischen Spiegeln, deren thermisches Rauschen die erreichbare Stabilität begrenzt“, erklärt PTB-Physiker Christian Hagemann. Daher wollen die Forscher zukünftig zu noch tieferen Temperaturen gehen und neuartige hochreflektierende Strukturen verwenden, um die Frequenzstabilität noch einmal um eine Größenordnung verbessern zu können. es/ptb

Wissenschaftliche Veröffentlichung:
Kessler, T.; Hagemann, C.; Grebing, C.; Legero, T.; Sterr, U.; Riehle, F.; Martin, M.J.; Chen, L.; Ye, J.:
A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nature Photonics, DOI: 10.1038/nphoton.2012.217,
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2012.217.html

Ansprechpartner:
Christian Hagemann, PTB-Arbeitsgruppe 4.32 Quantenoptik mit kalten Atomen,
Tel. (0531) 592-4357, E-Mail: christian.hagemann@ptb.de

Erika Schow | PTB
Weitere Informationen:
http://www.ptb.de
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2012.217.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Drei Generationen an Sternen unter einem Dach
27.07.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Physiker designen ultrascharfe Pulse
27.07.2017 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie