Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der stabilste Laser der Welt

12.09.2012
Neuer Silizium-Resonator hält die Frequenz eines Lasers so stabil wie nie zuvor – wichtig für noch bessere optische Atomuhren

Ein Laser mit einer bisher unerreichten Frequenzstabilität – das ist das Ergebnis einer Forschungskooperation der Physikalisch-Technischen Bundesanstalt (PTB) innerhalb des Exzellenzclusters QUEST (Centre for Quantum Engineering and Space-Time Research) mit Kollegen aus dem amerikanischen NIST (National Institute of Standards and Technology)/JILA.


Foto: Der neue Silizium-Resonator im Größenvergleich mit einer Münze
(Abb.: PTB)

Ihre Entwicklung, über die sie in der Fachzeitschrift Nature Photonics berichten, ist wichtig für die höchstauflösende optische Spektroskopie z. B. von ultrakalten Atomen. Doch vor allem steht jetzt ein noch stabilerer Abfragelaser für den Einsatz in optischen Atomuhren zur Verfügung.

Für den Betrieb optischer Atomuhren werden Laserquellen benötigt, die Licht mit möglichst gleichbleibender Frequenz ausstrahlen. Kommerzielle Lasersysteme sind ohne weitere Maßnahmen hierfür ungeeignet. Damit die Laser aber eine möglichst konstante Frequenz abgeben, stabilisiert man sie beispielsweise mithilfe optischer Resonatoren.
Diese setzen sich aus zwei hochreflektierenden Spiegeln zusammen, die durch einen Abstandshalter in fester Entfernung gehalten werden. Das Entscheidende: In Analogie zu einer Orgelpfeife bestimmt die Resonatorlänge, mit welcher Frequenz Licht im Resonator anschwingen kann. Für einen stabilen Laser wird folglich ein Resonator mit hoher Längenstabilität benötigt, d. h. der Abstand zwischen den Spiegeln muss so gut wie möglich konstant gehalten werden.

Moderne resonatorstabilisierte Lasersysteme sind mittlerweile technisch so ausgereift, dass ihre Stabilität nur noch durch das thermische Rauschen der Resonatoren begrenzt ist. Ähnlich zur Brown´schen Molekularbewegung sind die Atome in dem Resonator ständig in Bewegung und schränken damit seine Längenstabilität ein. Bisherige Resonatoren bestanden aus Glas, dessen ungeordnete und „weiche“ Materialstruktur besonders starke Bewegungen zeigt. Für den neuen Resonator hat die Forschergruppe einkristallines Silizium verwendet, ein besonders „steifes“ und deshalb rauscharmes Material.

Abgekühlt auf eine Temperatur von 124 K (-149 Grad Celsius) zeichnet sich Silizium durch eine verschwindend kleine Wärmeausdehnung aus und noch vorhandenes thermisches Rauschen wird zusätzlich reduziert. Um den Resonator bei dieser Temperatur betreiben zu können, mussten die Forscher zunächst einen geeigneten schwingungsarmen Kryostaten entwerfen. Das Resultat kann sich sehen lassen: Durch Vergleichsmessungen mit zwei Glasresonatoren konnten die Wissenschaftler eine bisher unerreichte Frequenzstabilität von 1 • 10-16 für den auf den Silizium-Resonator stabilisierten Laser nachweisen.

Damit können sie ein wichtiges Hindernis bei der Entwicklung noch besserer optischer Atomuhren aus dem Weg räumen. Denn die Stabilität der dabei verwendeten Laser ist ein kritischer Punkt. Das „Pendel“, also das schwingende System einer solchen Uhr, ist eine schmale optische Absorptionslinie in einem Atom oder Ion, deren Übergangsfrequenz von einem Laser ausgelesen wird. Die Linienbreite dieser Übergänge beträgt typischerweise wenige Millihertz, ein Wert, der durch die begrenzte Längenstabilität von Glasresonatoren nicht erreicht werden konnte.

Aber jetzt ist es möglich. Der Laser, der auf den Silizium-Resonator stabilisiert ist, erreicht eine Linienbreite von weniger als 40 mHz und kann daher dazu beitragen, bei der Entwicklung von optischen Atomuhren in eine neue Dimension vorzustoßen. Und auch die optische Präzisionsspektroskopie, ein weiterer Forschungsschwerpunkt des Exzellenzclusters QUEST, kann entscheidende Impulse bekommen.

„Für die Zukunft sehen wir noch Spielräume bei den optischen Spiegeln, deren thermisches Rauschen die erreichbare Stabilität begrenzt“, erklärt PTB-Physiker Christian Hagemann. Daher wollen die Forscher zukünftig zu noch tieferen Temperaturen gehen und neuartige hochreflektierende Strukturen verwenden, um die Frequenzstabilität noch einmal um eine Größenordnung verbessern zu können. es/ptb

Wissenschaftliche Veröffentlichung:
Kessler, T.; Hagemann, C.; Grebing, C.; Legero, T.; Sterr, U.; Riehle, F.; Martin, M.J.; Chen, L.; Ye, J.:
A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nature Photonics, DOI: 10.1038/nphoton.2012.217,
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2012.217.html

Ansprechpartner:
Christian Hagemann, PTB-Arbeitsgruppe 4.32 Quantenoptik mit kalten Atomen,
Tel. (0531) 592-4357, E-Mail: christian.hagemann@ptb.de

Erika Schow | PTB
Weitere Informationen:
http://www.ptb.de
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2012.217.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie