Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie stabil ist das Photon?

12.07.2013
Photonen, die Quanten der elektromagnetischen Strahlung, werden üblicherweise als masselos angenommen. Einfache Erweiterungen der Theorie erlauben aber eine von Null verschiedene Ruhemasse.

Als Konsequenz daraus könnten sie in noch leichtere Elementarteilchen zerfallen. Ein Physiker des Heidelberger Max-Planck-Instituts für Kernphysik hat berechnet, wie sich ein solcher Zerfall in der sehr alten kosmischen Hintergrundstrahlung äußern würde. Im Vergleich mit den präzisen Messdaten des COBE-Satelliten ergibt sich eine Untergrenze für die Lebensdauer des Photons zu drei Jahren. [Physical Review Letters, 11. Juli 2013]


a) Berechnetes Spektrum des kosmischen Mikrowellenhintergrunds für eine Lebensdauer des Photons von 1 Stunde (blau), 1 Tag (grün) und unendlich (schwarz). b) Differenz der Messdaten des COBE-Satelliten (dunkelblau) zum Fall unendlicher Lebensdauer (schwarze Nulllinie). Der rot schattierte Bereich ist die mit den Messdaten innerhalb der Fehlergrenzen mit 95% Wahrscheinlichkeit noch verträgliche Lebensdauer von mindestens 3 Jahren (rote Kurve). Für die Masse des Photons wurde die beste bekannte Obergrenze von 2∙10–54 kg angenommen. Grafik: MPIK

Sucht man in der Datensammlung der „Particle Data Group“ nach den Eigenschaften des Lichtteilchens, d. h. des Photons, so findet sich in dem bemerkenswert kurzen Eintrag: „Masse

Jedoch gibt es keinen zwingenden theoretischen Grund, der eine endlich große Masse des Photons verbieten würde und es existiert auch eine mathematische Beschreibung für diesen Fall. Auch wenn es exotisch klingt, lohnt es sich, die Konsequenzen eines massiven Photons zu betrachten, wie es Julian Heeck, Doktorand in der Gruppe von Werner Rodejohann am Heidelberger Max-Planck-Institut für Kernphysik (MPIK), getan hat. Dazu zählt die Möglichkeit, dass das Photon in noch leichtere Elementarteilchen zerfällt. Ein Kandidat hierfür ist z. B. das leichteste der drei bekannten Neutrinos, welches sogar masselos sein könnte. Ein Photon mit einer – wenn auch winzigen – Masse würde sich im Vakuum fast – aber eben nur fast – mit „Lichtgeschwindigkeit“ bewegen. Das bedeutet, dass massive Photonen altern, aber aufgrund ihrer hochrelativistischen Bewegung für uns als Beobachter nur äußerst langsam. Je größer die Energie des Photons bzw. die Frequenz des Lichtes ist, umso mehr dominiert die relativistische Masse über die Masse eines ruhenden Photons.

Auf der Suche nach einem messbaren Effekt der Photonmasse und einem daraus resultierenden möglichen Zerfall bietet sich die kosmische Hintergrundgrundstrahlung an. Diese ist zum einen sehr ‚altes‘ Licht, denn sie stammt aus dem frühen Universum vor ca. 13,8 Milliarden Jahren – quasi das ‚Echo‘ des Urknalls. Zudem liegt sie im Mikrowellenbereich, ist also relativ niederenergetisch. „In meiner Betrachtung kommt es nicht darauf an, in was Photonen zerfallen, sondern nur auf deren Lebensdauer – sie ist also modellunabhängig“, so Julian Heeck. Der kosmische Mikrowellenhintergrund wurde Anfang der 1990er Jahre durch den COBE-Satelliten der NASA mit einer Genauigkeit von 10–4 vermessen und bietet daher einen guten Datensatz zum Test der Lebensdauer des Photons. Wegen der relativistischen Zeitdehnung ist das mögliche Defizit durch seit dem Urknall zerfallene Hintergrundphotonen umso größer, je niedriger deren Energie bzw. Frequenz ist.

Die Abbildung zeigt das von COBE gemessene Spektrum der Hintergrundstrahlung im Vergleich mit den Berechnungen von Julian Heeck. In die Abweichung vom idealen Spektrum des Mikrowellenhintergrunds ohne Photonenzerfall geht das Verhältnis von Ruhemasse und Lebensdauer des Photons ein. Innerhalb der Fehlertoleranz der Messdaten liegt bei einer angenommenen Masse von 2∙10–54 kg die Lebensdauer mit 95% Wahrscheinlichkeit bei mindestens 3 Jahren. Dies erscheint sehr kurz, man muss aber berücksichtigen, dass dieser Wert für ein hypothetisch ruhendes Photon gilt. Für ein hochrelativistisches Mikrowellenphoton würde die Lebensdauer dank der Zeitdilatation bei 3 Billiarden Jahren liegen, so dass es vom frühen Universum bis heute überleben kann.

Obwohl die Masselosigkeit Teil der allgemein akzeptierten Theorie des Elektromagnetismus (Quantenelektrodynamik) ist, erlauben einfache Erweiterungen ein massives Photon. Die Fragestellung ist daher an die experimentellen Befunde gebunden. Bisher lassen sich daraus nur Obergrenzen angeben und eine der Herausforderungen ist, zu verstehen, warum dieser Parameter so klein (wenn nicht gar Null) ist. Die prinzipielle Möglichkeit des Zerfalls eines Photons in Neutrinos ist wiederum eng mit den noch unbekannten Massen dieser ‚Geisterteilchen‘ verknüpft,, welche am MPIK sowohl theoretisch (u. a. in der Gruppe von Werner Rodejohann) als auch experimentell (GERDA-Experiment) untersucht werden.

Originalveröffentlichung:
How stable is the Photon?
Julian Heeck; Physical Review Letters 111, 021801 (2013)
doi: 10.1103/PhysRevLett.111.021801
http://link.aps.org/doi/10.1103/PhysRevLett.111.021801
http://arxiv.org/abs/1304.2821
Kontakt:
Julian Heeck
Tel.: 06221/516-820
E-Mail: julian.heeck@mpi-hd.mpg.de
Dr. Werner Rodejohann
Tel.: 06221/516-824
E-Mail: werner.rodejohann@mpi-hd.mpg.de
Weitere Informationen:
http://www.mpi-hd.mpg.de/manitop
Gruppe MANITOP von Werner Rodejohann am MPIK
http://www.mpi-hd.mpg.de/lin
Abteilung Lindner am MPIK
http://lambda.gsfc.nasa.gov/product/cobe
Seite der NASA zu COBE

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie