Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie stabil ist das Photon?

12.07.2013
Photonen, die Quanten der elektromagnetischen Strahlung, werden üblicherweise als masselos angenommen. Einfache Erweiterungen der Theorie erlauben aber eine von Null verschiedene Ruhemasse.

Als Konsequenz daraus könnten sie in noch leichtere Elementarteilchen zerfallen. Ein Physiker des Heidelberger Max-Planck-Instituts für Kernphysik hat berechnet, wie sich ein solcher Zerfall in der sehr alten kosmischen Hintergrundstrahlung äußern würde. Im Vergleich mit den präzisen Messdaten des COBE-Satelliten ergibt sich eine Untergrenze für die Lebensdauer des Photons zu drei Jahren. [Physical Review Letters, 11. Juli 2013]


a) Berechnetes Spektrum des kosmischen Mikrowellenhintergrunds für eine Lebensdauer des Photons von 1 Stunde (blau), 1 Tag (grün) und unendlich (schwarz). b) Differenz der Messdaten des COBE-Satelliten (dunkelblau) zum Fall unendlicher Lebensdauer (schwarze Nulllinie). Der rot schattierte Bereich ist die mit den Messdaten innerhalb der Fehlergrenzen mit 95% Wahrscheinlichkeit noch verträgliche Lebensdauer von mindestens 3 Jahren (rote Kurve). Für die Masse des Photons wurde die beste bekannte Obergrenze von 2∙10–54 kg angenommen. Grafik: MPIK

Sucht man in der Datensammlung der „Particle Data Group“ nach den Eigenschaften des Lichtteilchens, d. h. des Photons, so findet sich in dem bemerkenswert kurzen Eintrag: „Masse

Jedoch gibt es keinen zwingenden theoretischen Grund, der eine endlich große Masse des Photons verbieten würde und es existiert auch eine mathematische Beschreibung für diesen Fall. Auch wenn es exotisch klingt, lohnt es sich, die Konsequenzen eines massiven Photons zu betrachten, wie es Julian Heeck, Doktorand in der Gruppe von Werner Rodejohann am Heidelberger Max-Planck-Institut für Kernphysik (MPIK), getan hat. Dazu zählt die Möglichkeit, dass das Photon in noch leichtere Elementarteilchen zerfällt. Ein Kandidat hierfür ist z. B. das leichteste der drei bekannten Neutrinos, welches sogar masselos sein könnte. Ein Photon mit einer – wenn auch winzigen – Masse würde sich im Vakuum fast – aber eben nur fast – mit „Lichtgeschwindigkeit“ bewegen. Das bedeutet, dass massive Photonen altern, aber aufgrund ihrer hochrelativistischen Bewegung für uns als Beobachter nur äußerst langsam. Je größer die Energie des Photons bzw. die Frequenz des Lichtes ist, umso mehr dominiert die relativistische Masse über die Masse eines ruhenden Photons.

Auf der Suche nach einem messbaren Effekt der Photonmasse und einem daraus resultierenden möglichen Zerfall bietet sich die kosmische Hintergrundgrundstrahlung an. Diese ist zum einen sehr ‚altes‘ Licht, denn sie stammt aus dem frühen Universum vor ca. 13,8 Milliarden Jahren – quasi das ‚Echo‘ des Urknalls. Zudem liegt sie im Mikrowellenbereich, ist also relativ niederenergetisch. „In meiner Betrachtung kommt es nicht darauf an, in was Photonen zerfallen, sondern nur auf deren Lebensdauer – sie ist also modellunabhängig“, so Julian Heeck. Der kosmische Mikrowellenhintergrund wurde Anfang der 1990er Jahre durch den COBE-Satelliten der NASA mit einer Genauigkeit von 10–4 vermessen und bietet daher einen guten Datensatz zum Test der Lebensdauer des Photons. Wegen der relativistischen Zeitdehnung ist das mögliche Defizit durch seit dem Urknall zerfallene Hintergrundphotonen umso größer, je niedriger deren Energie bzw. Frequenz ist.

Die Abbildung zeigt das von COBE gemessene Spektrum der Hintergrundstrahlung im Vergleich mit den Berechnungen von Julian Heeck. In die Abweichung vom idealen Spektrum des Mikrowellenhintergrunds ohne Photonenzerfall geht das Verhältnis von Ruhemasse und Lebensdauer des Photons ein. Innerhalb der Fehlertoleranz der Messdaten liegt bei einer angenommenen Masse von 2∙10–54 kg die Lebensdauer mit 95% Wahrscheinlichkeit bei mindestens 3 Jahren. Dies erscheint sehr kurz, man muss aber berücksichtigen, dass dieser Wert für ein hypothetisch ruhendes Photon gilt. Für ein hochrelativistisches Mikrowellenphoton würde die Lebensdauer dank der Zeitdilatation bei 3 Billiarden Jahren liegen, so dass es vom frühen Universum bis heute überleben kann.

Obwohl die Masselosigkeit Teil der allgemein akzeptierten Theorie des Elektromagnetismus (Quantenelektrodynamik) ist, erlauben einfache Erweiterungen ein massives Photon. Die Fragestellung ist daher an die experimentellen Befunde gebunden. Bisher lassen sich daraus nur Obergrenzen angeben und eine der Herausforderungen ist, zu verstehen, warum dieser Parameter so klein (wenn nicht gar Null) ist. Die prinzipielle Möglichkeit des Zerfalls eines Photons in Neutrinos ist wiederum eng mit den noch unbekannten Massen dieser ‚Geisterteilchen‘ verknüpft,, welche am MPIK sowohl theoretisch (u. a. in der Gruppe von Werner Rodejohann) als auch experimentell (GERDA-Experiment) untersucht werden.

Originalveröffentlichung:
How stable is the Photon?
Julian Heeck; Physical Review Letters 111, 021801 (2013)
doi: 10.1103/PhysRevLett.111.021801
http://link.aps.org/doi/10.1103/PhysRevLett.111.021801
http://arxiv.org/abs/1304.2821
Kontakt:
Julian Heeck
Tel.: 06221/516-820
E-Mail: julian.heeck@mpi-hd.mpg.de
Dr. Werner Rodejohann
Tel.: 06221/516-824
E-Mail: werner.rodejohann@mpi-hd.mpg.de
Weitere Informationen:
http://www.mpi-hd.mpg.de/manitop
Gruppe MANITOP von Werner Rodejohann am MPIK
http://www.mpi-hd.mpg.de/lin
Abteilung Lindner am MPIK
http://lambda.gsfc.nasa.gov/product/cobe
Seite der NASA zu COBE

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie