Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spurensicherung nach Asteroidencrash

14.10.2010
Forscher nutzen einzigartige Perspektive der Rosetta-Sonde, um kosmische Kollision exakt zu datieren

Zwei Asteroiden sind in der ersten Februarhälfte 2009 jenseits der Umlaufbahn des Mars aufeinander geprallt. Zu diesem Schluss kommen Wissenschaftler des Max-Planck-Instituts für Sonnensystemforschung. Die Forscher werteten Daten des Kamerasystems an Bord der europäischen Raumsonde Rosetta aus. Deren einzigartiger Blickwinkel sowie aufwendige Computersimulationen ermöglichten es, den Aufprall exakt zu rekonstruieren. Eine Kollision zweier Asteroiden, die sich vor so kurzer Zeit ereignet hat, war bisher unbekannt. (Nature, 14. Oktober 2010)


Ein Blick auf den Asteroiden P/2010 A2 mit dem Kamerasystem OSIRIS der europäischen Raumsonde Rosetta. Das Foto wurde im März 2010 aufgenommen.
Bild: ESA 2010 MPS for OSIRIS-Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA

Einige Millionen große und kleine Gesteinsbrocken bevölkern den Asteroidengürtel, die Region zwischen den Umlaufbahnen der Planeten Mars und Jupiter. Auf ihrem Weg um die Sonne kommt es immer wieder vor, dass solche Asteroiden (auch Planetoiden oder Kleinplaneten genannt) zusammenstoßen. Wegen der riesigen Ausmaße des Asteroidengürtels bleiben die meisten dieser Ereignisse unentdeckt. Größere Kollisionen, die sich vor Tausenden oder Millionen von Jahren ereigneten, verraten sich anhand diffuser Staubbänder im All. Ein anderer Hinweis sind Familien von Asteroiden mit ähnlichen Umlaufbahnen. Der Großteil des heutigen Wissens über derartige Zusammenstöße stammt aus "fossilen" Überbleibseln, denen die Astronomen in einer Art Weltraum-Paläontologie nachspüren.

Im Januar 2010 waren Wissenschaftler des amerikanischen Forschungsprojekts LINEAR (LIncoln Near-Earth Asteroid Research), die den Weltraum routinemäßig nach erdnahen Asteroiden absuchen, auf den bereits getroffenen Asteroiden P/2010 A2 gestoßen. Wegen seines Aussehens hielten viele Forscher den Himmelskörper zunächst für einen Kometen - und folgten bei der Benennung daher der gängigen Nomenklatur für diese Himmelskörper. Erst genauere Beobachtungen in den folgenden Monaten deckten sein wahres Wesen auf - und lieferten eine Überraschung.

"Das Objekt P/2010 A2 und ein nur wenige Meter großer Miniplanetoid sind sozusagen erst gestern ineinander gerast", sagt Colin Snodgrass vom Max-Planck-Institut für Sonnensystemforschung in Katlenburg-Lindau. Der Schweif aus Trümmerstücken lässt sich mithilfe großer Teleskope noch direkt beobachten. "Das ist so, als würde man statt Fossilien einen vollständigen Dinosaurier finden", fügt Snodgrass hinzu.

Entscheidend für die Datierung sind vor allem die Form des Trümmerschweifs und dessen zeitliche Entwicklung. "Um beides genau beurteilen zu können, kommt es in erster Linie auf die Beobachtungsperspektive an", erklärt Snodgrass. Da die Umlaufbahnen unseres Planeten und des Asteroiden nahezu in einer Ebene liegen, bilden alle Aufnahmen von der Erde aus lediglich eine Projektion des Schweifs ab. Dessen wirkliche Länge und Form lässt sich so nur schlecht erkennen.

Diese Einschränkung betrifft auch das hochpräzise Weltraumteleskop Hubble, das in 575 Kilometern Höhe um die Erde kreist - an kosmischen Entfernungen gemessen also in unmittelbarer Nähe. Allein der Raumsonde Rosetta, die sich zum Beobachtungszeitpunkt im März 2010 weit jenseits der Umlaufbahn des Mars befand, bot sich ein völlig anderer Blick: Denn die Umlaufbahnen des Asteroiden und der Sonde sind gegeneinander verkippt.

Die Situation ist vergleichbar mit dem frontalen Betrachten einer heranrasenden Lokomotive. Die lange Reihe der angehängten Waggons ist aus dieser Perspektive nur schlecht einzuschätzen. Erst wenn man seinen Standort etwa nach oben verlegt, wird die gesamte Länge des Zuges sichtbar.

"Anhand der Aufnahmen der Raumsonde konnten wir die dreidimensionale Gestalt des Schweifs erkennen", erklärt Snodgrass. Die Form sei für einen Kometen, der kontinuierlich Material emittiert, untypisch und deute auf den Trümmerschweif nach einem Asteroidenaufprall hin. Zusammen mit weiteren erdgebundenen Aufnahmen boten die Bilder von Rosetta Max-Planck-Wissenschaftlern die Möglichkeit genau zu rekonstruieren, wie sich der Schweif entwickelt hatte.

So fütterten sie ihr Computerprogramm zunächst mit einer Anfangsvermutung über die Größe der Trümmerstücke, die derzeit sichtbar sind. In einem nächsten Schritt berechneten die Forscher, wie sich die Verteilung dieser Stücke zeitlich entwickeln müsste. "Durch Vergleich mit der tatsächlichen Entwicklung lässt sich die Annahme der Teilchengröße immer weiter verfeinern - bis der genaue Zeitverlauf rekonstruiert ist", sagt Jean-Baptiste Vincent vom Max-Planck-Institut, der die Simulationen durchführte.

Mit ihrer Methode konnten die Wissenschaftler den Zeitpunkt des Aufpralls auf zehn Tage um den 10. Februar 2009 eingrenzen. Für die Trümmerstücke ermittelten sie zudem eine Größe von mindestens einem Millimeter. Die Berechnungen liefern einzigartige Erkenntnisse über die frühe Phase nach einer Asteroidenkollision.

Zudem ist das Ergebnis der Forscher eine bedeutende technische Leistung der Rosetta-Sonde. Der Trümmerschweif lässt sich nur schwer erkennen, auf der Erde mussten die größten Teleskope mit einer Öffnung von bis zu zehn Metern sowie das Weltraumteleskop Hubble eingesetzt werden. Im Vergleich ist das Kamerasystem OSIRIS an Bord von Rosetta etwa 7000-mal weniger leistungsstark. "Die OSIRIS Kamera entspricht eher dem Teleobjektiv eines Fotoapparats denn einem Teleskop", sagt Cecilia Tubiana, die die Bilder verarbeitet und ausgewertet hat.

"OSIRIS wurde entworfen, um aus der Nähe Aufnahmen von Kometen zu machen", ergänzt Holger Sierks, Leiter des OSIRIS-Teams. Stattdessen trennten die Raumsonde Millionen von Kilometern vom Asteroiden P/2010 A2, sodass die Trümmerstücke nur als sehr, sehr schwacher Schweif gegen den Sternenhintergrund zu erkennen waren. Insgesamt mussten die Forscher vier Stunden lang Bilder aufnehmen und diese sorgfältig kombinieren.

Die ESA-Raumsonde Rosetta ist seit 2004 unterwegs zum Kometen Churyumov-Gerasimenko, den sie 2014 erreichen wird. Das wissenschaftliche Kamerasystem OSIRIS wurde am Max-Planck-Institut für Sonnensystemforschung entwickelt und gebaut. Im Juli waren dem Kamerasystem beim Vorbeiflug am Asteroiden Lutetia einzigartige Aufnahmen gelungen.

Originalveröffentlichung:
Colin Snodgrass et al.
A collision in 2009 as the origin of the debris trail of asteroid P/2010 A2
Nature, 14. Oktober 2010
Weitere Informationen erhalten Sie von:
Dr. Birgit Krummheuer, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Tel.: +49 5556 979 462, mobil: +49 173 3958625
E-Mail: Krummheuer@mps.mpg.de
Dr. Colin Snodgrass
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Tel.: +49 5556 979 358
E-Mail: Snodgrass@mps.mpg.de
Dr. Holger Sierks
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Tel.: +49 5556 979 424
E-Mail: Sierks@mps.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz